silmi224's picture
Training complete
e6bc910 verified
metadata
base_model: silmi224/finetune-led-35000
tags:
  - summarization
  - generated_from_trainer
model-index:
  - name: led-risalah_data_v15
    results: []

led-risalah_data_v15

This model is a fine-tuned version of silmi224/finetune-led-35000 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6673
  • Rouge1 Precision: 0.7043
  • Rouge1 Recall: 0.1227
  • Rouge1 Fmeasure: 0.2067

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Precision Rouge1 Recall Rouge1 Fmeasure
3.0403 1.0 20 2.4986 0.5024 0.0555 0.0987
2.5716 2.0 40 2.1700 0.5606 0.0817 0.1409
2.2879 3.0 60 2.0072 0.5705 0.0869 0.1492
2.0807 4.0 80 1.9094 0.6048 0.0899 0.1542
1.927 5.0 100 1.8184 0.5472 0.0922 0.1561
1.8368 6.0 120 1.7721 0.6079 0.1036 0.1751
1.7468 7.0 140 1.7310 0.639 0.1095 0.1842
1.5913 8.0 160 1.6907 0.6637 0.1109 0.1875
1.534 9.0 180 1.6843 0.6355 0.1102 0.1851
1.4835 10.0 200 1.6605 0.6596 0.1141 0.1922
1.4958 11.0 220 1.6403 0.6929 0.1162 0.1973
1.4547 12.0 240 1.6347 0.6781 0.1118 0.1892
1.3069 13.0 260 1.6604 0.6626 0.1101 0.187
1.2639 14.0 280 1.6712 0.697 0.1227 0.2061
1.3249 15.0 300 1.6255 0.6529 0.1135 0.1914
1.185 16.0 320 1.6484 0.6806 0.1174 0.1981
1.1087 17.0 340 1.6425 0.682 0.1195 0.2008
1.1125 18.0 360 1.6509 0.7122 0.1235 0.2086
1.1574 19.0 380 1.6740 0.6983 0.1214 0.2052
0.9968 20.0 400 1.6673 0.7043 0.1227 0.2067

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1