led-risalah_data_v4

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6965
  • Rouge1 Precision: 0.7537
  • Rouge1 Recall: 0.2044
  • Rouge1 Fmeasure: 0.3201

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Fmeasure Rouge1 Precision Rouge1 Recall
2.4649 0.91 8 1.9501 0.2231 0.5607 0.1407
1.7599 1.94 17 1.7553 0.2741 0.657 0.1746
1.4655 2.97 26 1.6912 0.2786 0.6685 0.1774
1.2734 4.0 35 1.7006 0.2589 0.651 0.162
1.2852 4.91 43 1.6481 0.2733 0.6657 0.1732
1.1964 5.94 52 1.6380 0.263 0.6567 0.1655
1.108 6.97 61 1.6441 0.2766 0.6757 0.1746
1.1023 8.91 72 1.1080 0.2842 0.6932 0.1794
1.2354 9.94 81 1.1105 0.2816 0.6858 0.1779
1.1152 10.97 90 1.1317 0.2872 0.71 0.1804
1.17 12.0 99 1.1206 0.2896 0.6942 0.1837
1.0691 12.91 107 1.1037 0.2941 0.7234 0.1851
0.9594 13.94 116 1.1145 0.2983 0.7299 0.1879
1.0332 14.97 125 1.1295 0.2959 0.7243 0.1863
0.9519 16.0 134 1.1271 0.2916 0.7114 0.1839
0.8779 16.91 142 1.1314 0.2971 0.7192 0.1878
0.944 18.91 152 0.8427 0.3212 0.7799 0.2036
0.9652 19.94 161 0.8398 0.3075 0.7396 0.1951
0.9622 20.97 170 0.8421 0.3255 0.7776 0.207
0.9645 22.0 179 0.8550 0.3045 0.7283 0.1934
0.8923 22.91 187 0.8556 0.3145 0.7585 0.1992
0.8635 23.94 196 0.8622 0.3086 0.7445 0.1957
0.827 24.97 205 0.8648 0.3047 0.7358 0.193
0.8529 26.0 214 0.8650 0.3129 0.7586 0.1981
0.7505 26.91 222 0.8719 0.3135 0.7591 0.1985
0.7491 27.94 231 0.8710 0.3078 0.7419 0.1951

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.15.1
Downloads last month
14
Safetensors
Model size
162M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.