DNADebertaK6_Fruitfly
This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7137
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 600001
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.5584 | 5.36 | 20000 | 1.9795 |
1.9682 | 10.73 | 40000 | 1.8618 |
1.8692 | 16.09 | 60000 | 1.8273 |
1.8339 | 21.45 | 80000 | 1.8076 |
1.8208 | 26.82 | 100000 | 1.8073 |
1.8105 | 32.18 | 120000 | 1.7925 |
1.8022 | 37.54 | 140000 | 1.7909 |
1.7955 | 42.91 | 160000 | 1.7836 |
1.7907 | 48.27 | 180000 | 1.7769 |
1.7849 | 53.63 | 200000 | 1.7755 |
1.7805 | 59.0 | 220000 | 1.7677 |
1.7769 | 64.36 | 240000 | 1.7690 |
1.7723 | 69.72 | 260000 | 1.7614 |
1.7689 | 75.09 | 280000 | 1.7586 |
1.7646 | 80.45 | 300000 | 1.7523 |
1.7607 | 85.81 | 320000 | 1.7484 |
1.7572 | 91.18 | 340000 | 1.7458 |
1.754 | 96.54 | 360000 | 1.7460 |
1.7498 | 101.9 | 380000 | 1.7326 |
1.7463 | 107.27 | 400000 | 1.7377 |
1.7438 | 112.63 | 420000 | 1.7318 |
1.7406 | 117.99 | 440000 | 1.7342 |
1.7383 | 123.36 | 460000 | 1.7339 |
1.7348 | 128.72 | 480000 | 1.7244 |
1.7324 | 134.08 | 500000 | 1.7236 |
1.7289 | 139.45 | 520000 | 1.7155 |
1.7268 | 144.81 | 540000 | 1.7254 |
1.725 | 150.17 | 560000 | 1.7191 |
1.7221 | 155.54 | 580000 | 1.7147 |
1.7209 | 160.9 | 600000 | 1.7137 |
Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0
- Datasets 2.2.2
- Tokenizers 0.12.1
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.