|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- simecek/wikipedie_20230601 |
|
language: |
|
- cs |
|
--- |
|
|
|
This is a [Mistral7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) model fine-tuned with 4bit-QLoRA on Czech Wikipedia data. The model is primarily designed for further fine-tuning for Czech-specific NLP tasks, including summarization and question answering. This adaptation allows for better performance in tasks that require an understanding of the Czech language and context. |
|
|
|
For exact QLoRA parameters, see the Axolotl's [YAML file](cswiki-mistral7.yml). |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
|
|
**Example of usage:**: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
model_name = "simecek/cswikimistral_0.1" |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_4bit=True) |
|
|
|
def generate_text(prompt, max_new_tokens=50): |
|
inputs = tokenizer(prompt, return_tensors="pt").to(device) |
|
attention_mask = inputs["attention_mask"] |
|
input_ids = inputs["input_ids"] |
|
|
|
output = model.generate( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
max_new_tokens=max_new_tokens, |
|
num_return_sequences=1, |
|
pad_token_id=tokenizer.eos_token_id, |
|
) |
|
|
|
return tokenizer.decode(output[0], skip_special_tokens=True) |
|
|
|
prompt = "Hlavní město České republiky je" |
|
generated_text = generate_text(prompt, max_new_tokens=5) |
|
print(generated_text) |
|
``` |
|
|
|
|