TWON-Agents
Collection
4 items
•
Updated
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the generator dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.368 | 0.0522 | 200 | 2.1934 |
2.1134 | 0.1044 | 400 | 2.0532 |
1.9845 | 0.1567 | 600 | 1.9324 |
1.8706 | 0.2089 | 800 | 1.8196 |
1.7668 | 0.2611 | 1000 | 1.7153 |
1.6587 | 0.3133 | 1200 | 1.6127 |
1.5714 | 0.3655 | 1400 | 1.5284 |
1.5041 | 0.4178 | 1600 | 1.4524 |
1.4018 | 0.4700 | 1800 | 1.3912 |
1.3586 | 0.5222 | 2000 | 1.3282 |
1.2971 | 0.5744 | 2200 | 1.2665 |
1.2328 | 0.6266 | 2400 | 1.2156 |
1.2013 | 0.6789 | 2600 | 1.1665 |
1.1608 | 0.7311 | 2800 | 1.1344 |
1.1356 | 0.7833 | 3000 | 1.0867 |
1.0931 | 0.8355 | 3200 | 1.0500 |
1.0772 | 0.8877 | 3400 | 1.0196 |
1.0253 | 0.9399 | 3600 | 0.9892 |
1.0009 | 0.9922 | 3800 | 0.9622 |
0.9576 | 1.0444 | 4000 | 0.9344 |
0.9387 | 1.0966 | 4200 | 0.9117 |
0.9155 | 1.1488 | 4400 | 0.8891 |
0.9048 | 1.2010 | 4600 | 0.8720 |
0.891 | 1.2533 | 4800 | 0.8484 |
0.8625 | 1.3055 | 5000 | 0.8312 |
0.8397 | 1.3577 | 5200 | 0.8145 |
0.8291 | 1.4099 | 5400 | 0.7975 |
0.8244 | 1.4621 | 5600 | 0.7829 |
0.7993 | 1.5144 | 5800 | 0.7690 |
0.7817 | 1.5666 | 6000 | 0.7566 |
0.7725 | 1.6188 | 6200 | 0.7474 |
0.7402 | 1.6710 | 6400 | 0.7307 |
0.7559 | 1.7232 | 6600 | 0.7171 |
0.7314 | 1.7755 | 6800 | 0.7045 |
0.7301 | 1.8277 | 7000 | 0.6943 |
0.7164 | 1.8799 | 7200 | 0.6842 |
0.703 | 1.9321 | 7400 | 0.6739 |
0.7109 | 1.9843 | 7600 | 0.6638 |
0.6618 | 2.0366 | 7800 | 0.6570 |
0.6837 | 2.0888 | 8000 | 0.6474 |
0.658 | 2.1410 | 8200 | 0.6409 |
0.6645 | 2.1932 | 8400 | 0.6323 |
0.629 | 2.2454 | 8600 | 0.6237 |
0.6531 | 2.2977 | 8800 | 0.6151 |
0.6174 | 2.3499 | 9000 | 0.6121 |
0.6328 | 2.4021 | 9200 | 0.6024 |
0.6247 | 2.4543 | 9400 | 0.5949 |
0.6077 | 2.5065 | 9600 | 0.5900 |
0.6057 | 2.5587 | 9800 | 0.5817 |
0.6168 | 2.6110 | 10000 | 0.5747 |
0.6108 | 2.6632 | 10200 | 0.5711 |
0.5945 | 2.7154 | 10400 | 0.5651 |
0.5994 | 2.7676 | 10600 | 0.5578 |
0.5847 | 2.8198 | 10800 | 0.5509 |
0.5659 | 2.8721 | 11000 | 0.5495 |
0.5796 | 2.9243 | 11200 | 0.5407 |
0.5515 | 2.9765 | 11400 | 0.5350 |
0.551 | 3.0287 | 11600 | 0.5301 |
0.5639 | 3.0809 | 11800 | 0.5262 |
0.542 | 3.1332 | 12000 | 0.5214 |
0.5302 | 3.1854 | 12200 | 0.5182 |
0.552 | 3.2376 | 12400 | 0.5139 |
0.5433 | 3.2898 | 12600 | 0.5101 |
0.5455 | 3.3420 | 12800 | 0.5027 |
0.5229 | 3.3943 | 13000 | 0.5013 |
0.525 | 3.4465 | 13200 | 0.4985 |
0.5069 | 3.4987 | 13400 | 0.4926 |
0.5256 | 3.5509 | 13600 | 0.4869 |
0.5003 | 3.6031 | 13800 | 0.4858 |
0.5091 | 3.6554 | 14000 | 0.4812 |
0.4872 | 3.7076 | 14200 | 0.4781 |
0.5028 | 3.7598 | 14400 | 0.4739 |
0.5059 | 3.8120 | 14600 | 0.4708 |
0.481 | 3.8642 | 14800 | 0.4680 |
0.5065 | 3.9164 | 15000 | 0.4641 |
0.4764 | 3.9687 | 15200 | 0.4606 |
0.4974 | 4.0209 | 15400 | 0.4579 |
0.465 | 4.0731 | 15600 | 0.4561 |
0.4721 | 4.1253 | 15800 | 0.4531 |
0.4813 | 4.1775 | 16000 | 0.4490 |
0.4599 | 4.2298 | 16200 | 0.4464 |
0.4457 | 4.2820 | 16400 | 0.4438 |
0.464 | 4.3342 | 16600 | 0.4433 |
0.4932 | 4.3864 | 16800 | 0.4402 |
0.4885 | 4.4386 | 17000 | 0.4364 |
0.4554 | 4.4909 | 17200 | 0.4341 |
0.4573 | 4.5431 | 17400 | 0.4312 |
0.4721 | 4.5953 | 17600 | 0.4320 |
0.4472 | 4.6475 | 17800 | 0.4276 |
0.4542 | 4.6997 | 18000 | 0.4258 |
0.4455 | 4.7520 | 18200 | 0.4233 |
0.441 | 4.8042 | 18400 | 0.4221 |
0.4475 | 4.8564 | 18600 | 0.4203 |
0.4273 | 4.9086 | 18800 | 0.4170 |
0.4332 | 4.9608 | 19000 | 0.4149 |
0.4353 | 5.0131 | 19200 | 0.4136 |
0.4296 | 5.0653 | 19400 | 0.4119 |
0.424 | 5.1175 | 19600 | 0.4099 |
0.4238 | 5.1697 | 19800 | 0.4087 |
0.4354 | 5.2219 | 20000 | 0.4062 |
0.42 | 5.2742 | 20200 | 0.4058 |
0.4409 | 5.3264 | 20400 | 0.4039 |
0.4403 | 5.3786 | 20600 | 0.4012 |
0.4223 | 5.4308 | 20800 | 0.4004 |
0.4218 | 5.4830 | 21000 | 0.3995 |
0.4327 | 5.5352 | 21200 | 0.3994 |
0.4366 | 5.5875 | 21400 | 0.3956 |
0.4212 | 5.6397 | 21600 | 0.3942 |
0.4026 | 5.6919 | 21800 | 0.3951 |
0.4009 | 5.7441 | 22000 | 0.3927 |
0.4135 | 5.7963 | 22200 | 0.3914 |
0.397 | 5.8486 | 22400 | 0.3899 |
0.4191 | 5.9008 | 22600 | 0.3891 |
0.4093 | 5.9530 | 22800 | 0.3871 |
0.4135 | 6.0052 | 23000 | 0.3859 |
0.3993 | 6.0574 | 23200 | 0.3852 |
0.3874 | 6.1097 | 23400 | 0.3842 |
0.4121 | 6.1619 | 23600 | 0.3828 |
0.4175 | 6.2141 | 23800 | 0.3818 |
0.4044 | 6.2663 | 24000 | 0.3807 |
0.4004 | 6.3185 | 24200 | 0.3794 |
0.4104 | 6.3708 | 24400 | 0.3783 |
0.3962 | 6.4230 | 24600 | 0.3777 |
0.4003 | 6.4752 | 24800 | 0.3767 |
0.3887 | 6.5274 | 25000 | 0.3761 |
0.39 | 6.5796 | 25200 | 0.3753 |
0.3916 | 6.6319 | 25400 | 0.3745 |
0.4046 | 6.6841 | 25600 | 0.3740 |
0.4064 | 6.7363 | 25800 | 0.3725 |
0.3959 | 6.7885 | 26000 | 0.3736 |
0.3842 | 6.8407 | 26200 | 0.3718 |
0.3827 | 6.8930 | 26400 | 0.3710 |
0.3936 | 6.9452 | 26600 | 0.3707 |
0.3926 | 6.9974 | 26800 | 0.3701 |
0.3807 | 7.0496 | 27000 | 0.3696 |
0.3875 | 7.1018 | 27200 | 0.3691 |
0.3847 | 7.1540 | 27400 | 0.3685 |
0.3848 | 7.2063 | 27600 | 0.3678 |
0.3993 | 7.2585 | 27800 | 0.3678 |
0.3913 | 7.3107 | 28000 | 0.3674 |
0.3818 | 7.3629 | 28200 | 0.3668 |
0.3773 | 7.4151 | 28400 | 0.3664 |
0.3609 | 7.4674 | 28600 | 0.3658 |
0.3803 | 7.5196 | 28800 | 0.3658 |
0.3891 | 7.5718 | 29000 | 0.3652 |
0.3812 | 7.6240 | 29200 | 0.3650 |
0.3814 | 7.6762 | 29400 | 0.3648 |
0.3971 | 7.7285 | 29600 | 0.3645 |
0.3794 | 7.7807 | 29800 | 0.3641 |
0.3904 | 7.8329 | 30000 | 0.3641 |
0.4003 | 7.8851 | 30200 | 0.3638 |
0.3805 | 7.9373 | 30400 | 0.3638 |
0.3807 | 7.9896 | 30600 | 0.3637 |
Base model
meta-llama/Llama-3.2-3B-Instruct