bert-base-uncased-sst-2-16-13

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5049
  • Accuracy: 0.8125

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 0.7051 0.5312
No log 2.0 2 0.7048 0.5312
No log 3.0 3 0.7041 0.5312
No log 4.0 4 0.7029 0.5312
No log 5.0 5 0.7014 0.5625
No log 6.0 6 0.6996 0.5625
No log 7.0 7 0.6975 0.5625
No log 8.0 8 0.6951 0.5625
No log 9.0 9 0.6922 0.5625
0.7427 10.0 10 0.6891 0.5625
0.7427 11.0 11 0.6857 0.5625
0.7427 12.0 12 0.6820 0.5625
0.7427 13.0 13 0.6781 0.5625
0.7427 14.0 14 0.6740 0.5625
0.7427 15.0 15 0.6698 0.5312
0.7427 16.0 16 0.6658 0.5938
0.7427 17.0 17 0.6621 0.5625
0.7427 18.0 18 0.6585 0.5625
0.7427 19.0 19 0.6550 0.6562
0.6663 20.0 20 0.6516 0.6562
0.6663 21.0 21 0.6489 0.7188
0.6663 22.0 22 0.6471 0.7188
0.6663 23.0 23 0.6465 0.75
0.6663 24.0 24 0.6465 0.75
0.6663 25.0 25 0.6461 0.7188
0.6663 26.0 26 0.6450 0.7188
0.6663 27.0 27 0.6427 0.6875
0.6663 28.0 28 0.6394 0.6875
0.6663 29.0 29 0.6358 0.7188
0.5394 30.0 30 0.6319 0.75
0.5394 31.0 31 0.6279 0.75
0.5394 32.0 32 0.6244 0.7812
0.5394 33.0 33 0.6207 0.7812
0.5394 34.0 34 0.6169 0.7812
0.5394 35.0 35 0.6131 0.7812
0.5394 36.0 36 0.6096 0.7812
0.5394 37.0 37 0.6057 0.7812
0.5394 38.0 38 0.6028 0.7812
0.5394 39.0 39 0.6010 0.75
0.3922 40.0 40 0.5975 0.75
0.3922 41.0 41 0.5941 0.75
0.3922 42.0 42 0.5902 0.75
0.3922 43.0 43 0.5854 0.75
0.3922 44.0 44 0.5800 0.75
0.3922 45.0 45 0.5768 0.7188
0.3922 46.0 46 0.5747 0.7188
0.3922 47.0 47 0.5743 0.7188
0.3922 48.0 48 0.5765 0.7188
0.3922 49.0 49 0.5779 0.6875
0.2715 50.0 50 0.5813 0.7188
0.2715 51.0 51 0.5839 0.6875
0.2715 52.0 52 0.5857 0.7188
0.2715 53.0 53 0.5916 0.7188
0.2715 54.0 54 0.5986 0.75
0.2715 55.0 55 0.6033 0.75
0.2715 56.0 56 0.6016 0.75
0.2715 57.0 57 0.6004 0.75
0.2715 58.0 58 0.5928 0.75
0.2715 59.0 59 0.5860 0.7812
0.174 60.0 60 0.5795 0.75
0.174 61.0 61 0.5707 0.75
0.174 62.0 62 0.5629 0.7188
0.174 63.0 63 0.5578 0.6875
0.174 64.0 64 0.5535 0.7188
0.174 65.0 65 0.5498 0.7188
0.174 66.0 66 0.5468 0.7188
0.174 67.0 67 0.5436 0.7188
0.174 68.0 68 0.5404 0.7188
0.174 69.0 69 0.5373 0.7188
0.1107 70.0 70 0.5353 0.7188
0.1107 71.0 71 0.5327 0.7188
0.1107 72.0 72 0.5292 0.7188
0.1107 73.0 73 0.5243 0.75
0.1107 74.0 74 0.5187 0.75
0.1107 75.0 75 0.5131 0.75
0.1107 76.0 76 0.5081 0.75
0.1107 77.0 77 0.5036 0.75
0.1107 78.0 78 0.5005 0.75
0.1107 79.0 79 0.4982 0.7812
0.0742 80.0 80 0.4970 0.8438
0.0742 81.0 81 0.4958 0.8438
0.0742 82.0 82 0.4939 0.8438
0.0742 83.0 83 0.4908 0.8438
0.0742 84.0 84 0.4873 0.8125
0.0742 85.0 85 0.4840 0.8125
0.0742 86.0 86 0.4814 0.8125
0.0742 87.0 87 0.4790 0.8125
0.0742 88.0 88 0.4769 0.8125
0.0742 89.0 89 0.4750 0.8125
0.0494 90.0 90 0.4742 0.8125
0.0494 91.0 91 0.4737 0.8125
0.0494 92.0 92 0.4731 0.8125
0.0494 93.0 93 0.4726 0.8125
0.0494 94.0 94 0.4722 0.8125
0.0494 95.0 95 0.4720 0.8125
0.0494 96.0 96 0.4720 0.8125
0.0494 97.0 97 0.4715 0.8125
0.0494 98.0 98 0.4712 0.8125
0.0494 99.0 99 0.4710 0.8125
0.0331 100.0 100 0.4709 0.8125
0.0331 101.0 101 0.4711 0.8125
0.0331 102.0 102 0.4715 0.8125
0.0331 103.0 103 0.4725 0.8125
0.0331 104.0 104 0.4734 0.8125
0.0331 105.0 105 0.4742 0.8125
0.0331 106.0 106 0.4752 0.8125
0.0331 107.0 107 0.4761 0.8125
0.0331 108.0 108 0.4770 0.8125
0.0331 109.0 109 0.4780 0.8125
0.0246 110.0 110 0.4789 0.8125
0.0246 111.0 111 0.4804 0.8125
0.0246 112.0 112 0.4817 0.8125
0.0246 113.0 113 0.4829 0.8125
0.0246 114.0 114 0.4842 0.8125
0.0246 115.0 115 0.4851 0.8125
0.0246 116.0 116 0.4863 0.8125
0.0246 117.0 117 0.4880 0.8125
0.0246 118.0 118 0.4897 0.8125
0.0246 119.0 119 0.4913 0.8125
0.0191 120.0 120 0.4930 0.8125
0.0191 121.0 121 0.4945 0.8125
0.0191 122.0 122 0.4959 0.8125
0.0191 123.0 123 0.4971 0.8125
0.0191 124.0 124 0.4984 0.8125
0.0191 125.0 125 0.4995 0.8125
0.0191 126.0 126 0.5004 0.8125
0.0191 127.0 127 0.5014 0.8125
0.0191 128.0 128 0.5021 0.8125
0.0191 129.0 129 0.5027 0.8125
0.0163 130.0 130 0.5031 0.8125
0.0163 131.0 131 0.5031 0.8125
0.0163 132.0 132 0.5034 0.8125
0.0163 133.0 133 0.5035 0.8125
0.0163 134.0 134 0.5036 0.8125
0.0163 135.0 135 0.5036 0.8125
0.0163 136.0 136 0.5037 0.8125
0.0163 137.0 137 0.5038 0.8125
0.0163 138.0 138 0.5040 0.8125
0.0163 139.0 139 0.5043 0.8125
0.0147 140.0 140 0.5044 0.8125
0.0147 141.0 141 0.5046 0.8125
0.0147 142.0 142 0.5047 0.8125
0.0147 143.0 143 0.5049 0.8125
0.0147 144.0 144 0.5049 0.8125
0.0147 145.0 145 0.5049 0.8125
0.0147 146.0 146 0.5049 0.8125
0.0147 147.0 147 0.5049 0.8125
0.0147 148.0 148 0.5049 0.8125
0.0147 149.0 149 0.5049 0.8125
0.0138 150.0 150 0.5049 0.8125

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.4.0
  • Tokenizers 0.13.3
Downloads last month
105
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for simonycl/bert-base-uncased-sst-2-16-13

Finetuned
(2420)
this model