bert-base-uncased-sst-2-32-13-smoothed

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6688
  • Accuracy: 0.7188

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 75
  • label_smoothing_factor: 0.45

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 2 0.7003 0.4844
No log 2.0 4 0.6998 0.5
No log 3.0 6 0.6991 0.5
No log 4.0 8 0.6980 0.5
0.6958 5.0 10 0.6967 0.4844
0.6958 6.0 12 0.6953 0.4844
0.6958 7.0 14 0.6940 0.5312
0.6958 8.0 16 0.6928 0.5312
0.6958 9.0 18 0.6915 0.5625
0.6939 10.0 20 0.6904 0.625
0.6939 11.0 22 0.6894 0.625
0.6939 12.0 24 0.6885 0.6094
0.6939 13.0 26 0.6881 0.5938
0.6939 14.0 28 0.6874 0.5938
0.6707 15.0 30 0.6870 0.6094
0.6707 16.0 32 0.6869 0.6562
0.6707 17.0 34 0.6871 0.6562
0.6707 18.0 36 0.6867 0.625
0.6707 19.0 38 0.6858 0.625
0.6407 20.0 40 0.6848 0.6094
0.6407 21.0 42 0.6840 0.5781
0.6407 22.0 44 0.6850 0.5781
0.6407 23.0 46 0.6852 0.5625
0.6407 24.0 48 0.6845 0.5625
0.6016 25.0 50 0.6853 0.5938
0.6016 26.0 52 0.6859 0.5938
0.6016 27.0 54 0.6851 0.5781
0.6016 28.0 56 0.6812 0.5938
0.6016 29.0 58 0.6793 0.6094
0.5645 30.0 60 0.6786 0.6094
0.5645 31.0 62 0.6774 0.625
0.5645 32.0 64 0.6763 0.6719
0.5645 33.0 66 0.6754 0.6719
0.5645 34.0 68 0.6751 0.6562
0.5434 35.0 70 0.6748 0.6719
0.5434 36.0 72 0.6741 0.7031
0.5434 37.0 74 0.6745 0.6875
0.5434 38.0 76 0.6752 0.7031
0.5434 39.0 78 0.6756 0.6719
0.5383 40.0 80 0.6755 0.6719
0.5383 41.0 82 0.6760 0.6875
0.5383 42.0 84 0.6778 0.6406
0.5383 43.0 86 0.6802 0.6406
0.5383 44.0 88 0.6823 0.6406
0.5379 45.0 90 0.6827 0.5938
0.5379 46.0 92 0.6815 0.6094
0.5379 47.0 94 0.6804 0.625
0.5379 48.0 96 0.6790 0.6406
0.5379 49.0 98 0.6756 0.6562
0.5371 50.0 100 0.6739 0.6562
0.5371 51.0 102 0.6726 0.6406
0.5371 52.0 104 0.6718 0.6719
0.5371 53.0 106 0.6710 0.7031
0.5371 54.0 108 0.6705 0.6875
0.5365 55.0 110 0.6701 0.6875
0.5365 56.0 112 0.6698 0.6875
0.5365 57.0 114 0.6696 0.7031
0.5365 58.0 116 0.6694 0.6875
0.5365 59.0 118 0.6693 0.6875
0.5369 60.0 120 0.6690 0.7031
0.5369 61.0 122 0.6687 0.7188
0.5369 62.0 124 0.6687 0.7344
0.5369 63.0 126 0.6688 0.7031
0.5369 64.0 128 0.6688 0.6875
0.5365 65.0 130 0.6688 0.7031
0.5365 66.0 132 0.6688 0.7188
0.5365 67.0 134 0.6688 0.7188
0.5365 68.0 136 0.6688 0.7188
0.5365 69.0 138 0.6688 0.7344
0.5364 70.0 140 0.6687 0.7344
0.5364 71.0 142 0.6687 0.7188
0.5364 72.0 144 0.6687 0.7188
0.5364 73.0 146 0.6687 0.7188
0.5364 74.0 148 0.6688 0.7188
0.5366 75.0 150 0.6688 0.7188

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.4.0
  • Tokenizers 0.13.3
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for simonycl/bert-base-uncased-sst-2-32-13-smoothed

Finetuned
(2372)
this model