bert-base-uncased-sst-2-32-42

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1901
  • Accuracy: 0.8438

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 2 1.0945 0.8438
No log 2.0 4 1.0962 0.8438
No log 3.0 6 1.0975 0.8438
No log 4.0 8 1.0969 0.8438
0.3232 5.0 10 1.0974 0.8438
0.3232 6.0 12 1.0999 0.8438
0.3232 7.0 14 1.1032 0.8438
0.3232 8.0 16 1.1075 0.8438
0.3232 9.0 18 1.1108 0.8438
0.2269 10.0 20 1.1140 0.8438
0.2269 11.0 22 1.1163 0.8438
0.2269 12.0 24 1.1175 0.8438
0.2269 13.0 26 1.1187 0.8438
0.2269 14.0 28 1.1226 0.8438
0.2217 15.0 30 1.1271 0.8438
0.2217 16.0 32 1.1355 0.8281
0.2217 17.0 34 1.1405 0.8281
0.2217 18.0 36 1.1476 0.8281
0.2217 19.0 38 1.1562 0.8281
0.1358 20.0 40 1.1569 0.8281
0.1358 21.0 42 1.1629 0.8281
0.1358 22.0 44 1.1726 0.8281
0.1358 23.0 46 1.1825 0.8281
0.1358 24.0 48 1.1896 0.8281
0.0945 25.0 50 1.1960 0.8281
0.0945 26.0 52 1.1980 0.8281
0.0945 27.0 54 1.2014 0.8281
0.0945 28.0 56 1.2004 0.8281
0.0945 29.0 58 1.1992 0.8281
0.0102 30.0 60 1.2000 0.8281
0.0102 31.0 62 1.1996 0.8281
0.0102 32.0 64 1.1994 0.8281
0.0102 33.0 66 1.1984 0.8281
0.0102 34.0 68 1.1975 0.8281
0.0004 35.0 70 1.1966 0.8281
0.0004 36.0 72 1.1971 0.8281
0.0004 37.0 74 1.1918 0.8281
0.0004 38.0 76 1.1864 0.8281
0.0004 39.0 78 1.1858 0.8281
0.0028 40.0 80 1.1883 0.8281
0.0028 41.0 82 1.1933 0.8281
0.0028 42.0 84 1.2003 0.8281
0.0028 43.0 86 1.2063 0.8281
0.0028 44.0 88 1.2014 0.8281
0.0092 45.0 90 1.1965 0.8281
0.0092 46.0 92 1.1912 0.8281
0.0092 47.0 94 1.1926 0.8281
0.0092 48.0 96 1.1938 0.8281
0.0092 49.0 98 1.1984 0.8281
0.0006 50.0 100 1.1990 0.8281
0.0006 51.0 102 1.2001 0.8281
0.0006 52.0 104 1.2040 0.8281
0.0006 53.0 106 1.2078 0.8281
0.0006 54.0 108 1.2113 0.8281
0.0003 55.0 110 1.2143 0.8281
0.0003 56.0 112 1.2169 0.8281
0.0003 57.0 114 1.2028 0.8281
0.0003 58.0 116 1.1896 0.8281
0.0003 59.0 118 1.1822 0.8281
0.0153 60.0 120 1.1789 0.8281
0.0153 61.0 122 1.1781 0.8281
0.0153 62.0 124 1.1776 0.8281
0.0153 63.0 126 1.1771 0.8281
0.0153 64.0 128 1.1767 0.8281
0.0003 65.0 130 1.1767 0.8281
0.0003 66.0 132 1.1771 0.8281
0.0003 67.0 134 1.1775 0.8281
0.0003 68.0 136 1.1780 0.8281
0.0003 69.0 138 1.1786 0.8281
0.0002 70.0 140 1.1807 0.8281
0.0002 71.0 142 1.1831 0.8281
0.0002 72.0 144 1.1852 0.8281
0.0002 73.0 146 1.1872 0.8281
0.0002 74.0 148 1.1889 0.8281
0.0068 75.0 150 1.2038 0.8281
0.0068 76.0 152 1.2080 0.8281
0.0068 77.0 154 1.2113 0.8281
0.0068 78.0 156 1.2141 0.8281
0.0068 79.0 158 1.2226 0.8281
0.0003 80.0 160 1.2292 0.8281
0.0003 81.0 162 1.2347 0.8281
0.0003 82.0 164 1.2393 0.8281
0.0003 83.0 166 1.2436 0.8281
0.0003 84.0 168 1.2472 0.8281
0.0002 85.0 170 1.2502 0.8281
0.0002 86.0 172 1.2531 0.8281
0.0002 87.0 174 1.2556 0.8281
0.0002 88.0 176 1.2579 0.8281
0.0002 89.0 178 1.2599 0.8281
0.0002 90.0 180 1.2614 0.8281
0.0002 91.0 182 1.2626 0.8281
0.0002 92.0 184 1.2639 0.8281
0.0002 93.0 186 1.2649 0.8281
0.0002 94.0 188 1.2657 0.8281
0.0002 95.0 190 1.2663 0.8281
0.0002 96.0 192 1.2670 0.8281
0.0002 97.0 194 1.2676 0.8281
0.0002 98.0 196 1.2682 0.8281
0.0002 99.0 198 1.2689 0.8281
0.0002 100.0 200 1.2691 0.8281
0.0002 101.0 202 1.2691 0.8281
0.0002 102.0 204 1.2692 0.8281
0.0002 103.0 206 1.2689 0.8281
0.0002 104.0 208 1.2687 0.8281
0.0002 105.0 210 1.2686 0.8281
0.0002 106.0 212 1.2684 0.8281
0.0002 107.0 214 1.2683 0.8281
0.0002 108.0 216 1.2680 0.8281
0.0002 109.0 218 1.2681 0.8281
0.0002 110.0 220 1.2683 0.8281
0.0002 111.0 222 1.2685 0.8281
0.0002 112.0 224 1.2688 0.8281
0.0002 113.0 226 1.2690 0.8281
0.0002 114.0 228 1.2694 0.8281
0.0001 115.0 230 1.2697 0.8281
0.0001 116.0 232 1.2700 0.8281
0.0001 117.0 234 1.2701 0.8281
0.0001 118.0 236 1.2702 0.8281
0.0001 119.0 238 1.2701 0.8281
0.0001 120.0 240 1.2699 0.8281
0.0001 121.0 242 1.2691 0.8281
0.0001 122.0 244 1.2680 0.8281
0.0001 123.0 246 1.2673 0.8281
0.0001 124.0 248 1.2668 0.8281
0.0001 125.0 250 1.2666 0.8281
0.0001 126.0 252 1.2665 0.8281
0.0001 127.0 254 1.2666 0.8281
0.0001 128.0 256 1.2669 0.8281
0.0001 129.0 258 1.2675 0.8281
0.0001 130.0 260 1.2682 0.8281
0.0001 131.0 262 1.2686 0.8281
0.0001 132.0 264 1.2690 0.8281
0.0001 133.0 266 1.2695 0.8281
0.0001 134.0 268 1.2701 0.8281
0.0001 135.0 270 1.2712 0.8281
0.0001 136.0 272 1.2735 0.8281
0.0001 137.0 274 1.2757 0.8281
0.0001 138.0 276 1.2675 0.8281
0.0001 139.0 278 1.2518 0.8281
0.0009 140.0 280 1.2009 0.8438
0.0009 141.0 282 1.1175 0.8594
0.0009 142.0 284 1.1144 0.8594
0.0009 143.0 286 1.1362 0.8594
0.0009 144.0 288 1.1667 0.8438
0.0002 145.0 290 1.1906 0.8438
0.0002 146.0 292 1.2067 0.8438
0.0002 147.0 294 1.2182 0.8438
0.0002 148.0 296 1.2263 0.8438
0.0002 149.0 298 1.2321 0.8438
0.0004 150.0 300 1.1901 0.8438

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.4.0
  • Tokenizers 0.13.3
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for simonycl/bert-base-uncased-sst-2-32-42

Finetuned
(2372)
this model