bert-base-uncased-sst-2-64-13-smoothed

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6180
  • Accuracy: 0.8281

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 75
  • label_smoothing_factor: 0.45

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 4 0.6942 0.5234
No log 2.0 8 0.6933 0.5547
0.6914 3.0 12 0.6922 0.5547
0.6914 4.0 16 0.6906 0.5469
0.692 5.0 20 0.6887 0.5781
0.692 6.0 24 0.6867 0.6328
0.692 7.0 28 0.6841 0.6406
0.6784 8.0 32 0.6813 0.6406
0.6784 9.0 36 0.6780 0.6484
0.6647 10.0 40 0.6731 0.6484
0.6647 11.0 44 0.6674 0.7188
0.6647 12.0 48 0.6615 0.7344
0.6336 13.0 52 0.6535 0.7109
0.6336 14.0 56 0.6475 0.7422
0.5851 15.0 60 0.6394 0.7812
0.5851 16.0 64 0.6344 0.7656
0.5851 17.0 68 0.6371 0.7578
0.5508 18.0 72 0.6343 0.7656
0.5508 19.0 76 0.6337 0.7734
0.5412 20.0 80 0.6377 0.7578
0.5412 21.0 84 0.6349 0.7812
0.5412 22.0 88 0.6269 0.7891
0.5393 23.0 92 0.6227 0.8281
0.5393 24.0 96 0.6209 0.8203
0.5375 25.0 100 0.6198 0.8203
0.5375 26.0 104 0.6194 0.8359
0.5375 27.0 108 0.6205 0.8203
0.5377 28.0 112 0.6223 0.8125
0.5377 29.0 116 0.6236 0.8047
0.537 30.0 120 0.6235 0.8047
0.537 31.0 124 0.6250 0.7891
0.537 32.0 128 0.6243 0.7969
0.5375 33.0 132 0.6215 0.8281
0.5375 34.0 136 0.6206 0.8203
0.5368 35.0 140 0.6201 0.8281
0.5368 36.0 144 0.6200 0.8359
0.5368 37.0 148 0.6198 0.8359
0.5363 38.0 152 0.6199 0.8281
0.5363 39.0 156 0.6202 0.8203
0.5365 40.0 160 0.6198 0.8281
0.5365 41.0 164 0.6192 0.8359
0.5365 42.0 168 0.6192 0.8438
0.5369 43.0 172 0.6188 0.8281
0.5369 44.0 176 0.6192 0.8203
0.5363 45.0 180 0.6196 0.8203
0.5363 46.0 184 0.6186 0.8203
0.5363 47.0 188 0.6182 0.8359
0.5362 48.0 192 0.6181 0.8359
0.5362 49.0 196 0.6182 0.8203
0.5365 50.0 200 0.6182 0.8203
0.5365 51.0 204 0.6179 0.8359
0.5365 52.0 208 0.6177 0.8359
0.5359 53.0 212 0.6175 0.8359
0.5359 54.0 216 0.6174 0.8281
0.5366 55.0 220 0.6174 0.8359
0.5366 56.0 224 0.6175 0.8359
0.5366 57.0 228 0.6176 0.8359
0.5362 58.0 232 0.6177 0.8359
0.5362 59.0 236 0.6179 0.8359
0.5359 60.0 240 0.6179 0.8359
0.5359 61.0 244 0.6178 0.8359
0.5359 62.0 248 0.6177 0.8359
0.5358 63.0 252 0.6178 0.8359
0.5358 64.0 256 0.6179 0.8359
0.5361 65.0 260 0.6181 0.8281
0.5361 66.0 264 0.6182 0.8281
0.5361 67.0 268 0.6181 0.8281
0.5358 68.0 272 0.6181 0.8281
0.5358 69.0 276 0.6181 0.8281
0.5362 70.0 280 0.6180 0.8281
0.5362 71.0 284 0.6180 0.8359
0.5362 72.0 288 0.6180 0.8359
0.5356 73.0 292 0.6180 0.8359
0.5356 74.0 296 0.6180 0.8281
0.5358 75.0 300 0.6180 0.8281

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.4.0
  • Tokenizers 0.13.3
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for simonycl/bert-base-uncased-sst-2-64-13-smoothed

Finetuned
(2372)
this model