roberta-base-sst-2-32-13

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9957
  • Accuracy: 0.8438

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 2 0.6951 0.5
No log 2.0 4 0.6951 0.5
No log 3.0 6 0.6951 0.5
No log 4.0 8 0.6951 0.5
0.6937 5.0 10 0.6950 0.5
0.6937 6.0 12 0.6950 0.5
0.6937 7.0 14 0.6950 0.5
0.6937 8.0 16 0.6950 0.5
0.6937 9.0 18 0.6949 0.5
0.6953 10.0 20 0.6949 0.5
0.6953 11.0 22 0.6949 0.5
0.6953 12.0 24 0.6948 0.5
0.6953 13.0 26 0.6948 0.5
0.6953 14.0 28 0.6947 0.5
0.6975 15.0 30 0.6947 0.5
0.6975 16.0 32 0.6946 0.5
0.6975 17.0 34 0.6946 0.5
0.6975 18.0 36 0.6945 0.5
0.6975 19.0 38 0.6944 0.5
0.6888 20.0 40 0.6944 0.5
0.6888 21.0 42 0.6943 0.5
0.6888 22.0 44 0.6942 0.5
0.6888 23.0 46 0.6942 0.5
0.6888 24.0 48 0.6941 0.5
0.6947 25.0 50 0.6940 0.5
0.6947 26.0 52 0.6940 0.5
0.6947 27.0 54 0.6939 0.5
0.6947 28.0 56 0.6938 0.5
0.6947 29.0 58 0.6937 0.5
0.69 30.0 60 0.6937 0.5
0.69 31.0 62 0.6936 0.5
0.69 32.0 64 0.6936 0.5
0.69 33.0 66 0.6935 0.5
0.69 34.0 68 0.6934 0.5
0.6901 35.0 70 0.6933 0.5
0.6901 36.0 72 0.6932 0.5
0.6901 37.0 74 0.6931 0.5
0.6901 38.0 76 0.6930 0.5
0.6901 39.0 78 0.6929 0.5
0.6895 40.0 80 0.6928 0.5
0.6895 41.0 82 0.6927 0.5
0.6895 42.0 84 0.6926 0.5
0.6895 43.0 86 0.6925 0.5
0.6895 44.0 88 0.6924 0.5
0.6874 45.0 90 0.6922 0.5
0.6874 46.0 92 0.6921 0.5
0.6874 47.0 94 0.6919 0.5
0.6874 48.0 96 0.6917 0.5
0.6874 49.0 98 0.6915 0.5
0.6865 50.0 100 0.6913 0.5
0.6865 51.0 102 0.6911 0.5
0.6865 52.0 104 0.6908 0.5
0.6865 53.0 106 0.6904 0.4844
0.6865 54.0 108 0.6901 0.4688
0.6818 55.0 110 0.6897 0.4688
0.6818 56.0 112 0.6892 0.4531
0.6818 57.0 114 0.6887 0.5625
0.6818 58.0 116 0.6880 0.6094
0.6818 59.0 118 0.6872 0.6406
0.6697 60.0 120 0.6863 0.6406
0.6697 61.0 122 0.6852 0.6875
0.6697 62.0 124 0.6838 0.7656
0.6697 63.0 126 0.6820 0.7812
0.6697 64.0 128 0.6798 0.7656
0.6559 65.0 130 0.6769 0.7656
0.6559 66.0 132 0.6730 0.7188
0.6559 67.0 134 0.6675 0.7344
0.6559 68.0 136 0.6598 0.7188
0.6559 69.0 138 0.6489 0.7188
0.6085 70.0 140 0.6343 0.7188
0.6085 71.0 142 0.6161 0.7656
0.6085 72.0 144 0.5928 0.8125
0.6085 73.0 146 0.5652 0.8438
0.6085 74.0 148 0.5367 0.8594
0.474 75.0 150 0.5083 0.8438
0.474 76.0 152 0.4779 0.8438
0.474 77.0 154 0.4473 0.8594
0.474 78.0 156 0.4179 0.8594
0.474 79.0 158 0.3930 0.875
0.2428 80.0 160 0.3782 0.8594
0.2428 81.0 162 0.3734 0.8438
0.2428 82.0 164 0.3731 0.8594
0.2428 83.0 166 0.3816 0.875
0.2428 84.0 168 0.4042 0.8438
0.0805 85.0 170 0.4405 0.8438
0.0805 86.0 172 0.4840 0.8281
0.0805 87.0 174 0.5432 0.8125
0.0805 88.0 176 0.6025 0.8125
0.0805 89.0 178 0.6412 0.8125
0.0222 90.0 180 0.6653 0.8125
0.0222 91.0 182 0.6845 0.8125
0.0222 92.0 184 0.6954 0.8125
0.0222 93.0 186 0.7007 0.8281
0.0222 94.0 188 0.7029 0.8438
0.0093 95.0 190 0.7083 0.8438
0.0093 96.0 192 0.7172 0.8594
0.0093 97.0 194 0.7250 0.8594
0.0093 98.0 196 0.7286 0.8594
0.0093 99.0 198 0.7361 0.8594
0.0058 100.0 200 0.7447 0.8594
0.0058 101.0 202 0.7544 0.8594
0.0058 102.0 204 0.7632 0.8594
0.0058 103.0 206 0.7724 0.8594
0.0058 104.0 208 0.7842 0.8594
0.0041 105.0 210 0.7955 0.8594
0.0041 106.0 212 0.8061 0.8594
0.0041 107.0 214 0.8164 0.8594
0.0041 108.0 216 0.8262 0.8594
0.0041 109.0 218 0.8348 0.8594
0.0032 110.0 220 0.8438 0.8594
0.0032 111.0 222 0.8514 0.8594
0.0032 112.0 224 0.8582 0.8594
0.0032 113.0 226 0.8650 0.8594
0.0032 114.0 228 0.8718 0.8438
0.0028 115.0 230 0.8777 0.8438
0.0028 116.0 232 0.8829 0.8438
0.0028 117.0 234 0.8884 0.8438
0.0028 118.0 236 0.8938 0.8438
0.0028 119.0 238 0.8986 0.8438
0.0024 120.0 240 0.9023 0.8438
0.0024 121.0 242 0.9055 0.8438
0.0024 122.0 244 0.9087 0.8438
0.0024 123.0 246 0.9121 0.8438
0.0024 124.0 248 0.9165 0.8438
0.0021 125.0 250 0.9209 0.8438
0.0021 126.0 252 0.9258 0.8438
0.0021 127.0 254 0.9303 0.8438
0.0021 128.0 256 0.9338 0.8438
0.0021 129.0 258 0.9365 0.8438
0.0019 130.0 260 0.9395 0.8438
0.0019 131.0 262 0.9426 0.8438
0.0019 132.0 264 0.9448 0.8438
0.0019 133.0 266 0.9463 0.8438
0.0019 134.0 268 0.9480 0.8438
0.0017 135.0 270 0.9506 0.8438
0.0017 136.0 272 0.9535 0.8438
0.0017 137.0 274 0.9561 0.8438
0.0017 138.0 276 0.9579 0.8438
0.0017 139.0 278 0.9596 0.8438
0.0015 140.0 280 0.9618 0.8438
0.0015 141.0 282 0.9650 0.8438
0.0015 142.0 284 0.9682 0.8438
0.0015 143.0 286 0.9712 0.8438
0.0015 144.0 288 0.9741 0.8438
0.0014 145.0 290 0.9769 0.8438
0.0014 146.0 292 0.9801 0.8438
0.0014 147.0 294 0.9835 0.8438
0.0014 148.0 296 0.9872 0.8438
0.0014 149.0 298 0.9911 0.8438
0.0013 150.0 300 0.9957 0.8438

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.4.0
  • Tokenizers 0.13.3
Downloads last month
21
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for simonycl/roberta-base-sst-2-32-13

Finetuned
(1375)
this model