roberta-large-sst-2-64-13-30

This model is a fine-tuned version of roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8764
  • Accuracy: 0.8828

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 4 0.7179 0.5
No log 2.0 8 0.6981 0.5312
0.717 3.0 12 0.6948 0.4688
0.717 4.0 16 0.7043 0.4453
0.6986 5.0 20 0.6971 0.4688
0.6986 6.0 24 0.7705 0.5156
0.6986 7.0 28 0.7463 0.625
0.6087 8.0 32 0.7016 0.6172
0.6087 9.0 36 0.5869 0.7656
0.5365 10.0 40 0.5156 0.8047
0.5365 11.0 44 0.4578 0.8203
0.5365 12.0 48 0.3511 0.9141
0.3599 13.0 52 0.3583 0.8828
0.3599 14.0 56 0.3759 0.8828
0.1271 15.0 60 0.4324 0.8906
0.1271 16.0 64 0.4806 0.8984
0.1271 17.0 68 0.5256 0.875
0.0516 18.0 72 0.6432 0.8906
0.0516 19.0 76 0.6976 0.875
0.0034 20.0 80 0.8148 0.875
0.0034 21.0 84 0.8401 0.8828
0.0034 22.0 88 0.8721 0.8828
0.0467 23.0 92 0.8001 0.8906
0.0467 24.0 96 0.8580 0.8828
0.0005 25.0 100 0.8849 0.875
0.0005 26.0 104 0.9024 0.875
0.0005 27.0 108 0.9125 0.875
0.0005 28.0 112 0.8686 0.8828
0.0005 29.0 116 0.8764 0.8828
0.0231 30.0 120 0.8764 0.8828

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.4.0
  • Tokenizers 0.13.3
Downloads last month
111
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for simonycl/roberta-large-sst-2-64-13-30

Finetuned
(299)
this model