Breeze DSW Malayalam - tiny

This model is a fine-tuned version of openai/whisper-tiny on the mozilla-foundation/common_voice_16_0 ml dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5503
  • Wer: 54.3744

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1736 2.02 100 1.1670 99.7776
0.9647 4.04 200 1.0049 95.4866
0.5311 7.02 300 0.6807 74.5598
0.3036 9.04 400 0.5410 61.5755
0.1672 12.02 500 0.5146 56.5709
0.1006 14.04 600 0.5503 54.3744
0.0484 17.02 700 0.5859 54.5042
0.0305 19.04 800 0.6562 55.4124
0.0147 22.02 900 0.7095 54.8749
0.0116 24.04 1000 0.7383 55.0973

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0
Downloads last month
20
Safetensors
Model size
57.7M params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for simpragma/breeze-dsw-tiny-ml

Finetuned
(1303)
this model

Dataset used to train simpragma/breeze-dsw-tiny-ml

Collection including simpragma/breeze-dsw-tiny-ml

Evaluation results