|
--- |
|
library_name: peft |
|
license: other |
|
base_model: unsloth/Llama-3.2-3B-Instruct |
|
tags: |
|
- llama-factory |
|
- lora |
|
- unsloth |
|
- generated_from_trainer |
|
model-index: |
|
- name: llm3br256 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llm3br256 |
|
|
|
This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on the asianpaints dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0114 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 5.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.0567 | 0.0460 | 5 | 0.0584 | |
|
| 0.0378 | 0.0920 | 10 | 0.0384 | |
|
| 0.0301 | 0.1379 | 15 | 0.0318 | |
|
| 0.0248 | 0.1839 | 20 | 0.0281 | |
|
| 0.0241 | 0.2299 | 25 | 0.0256 | |
|
| 0.021 | 0.2759 | 30 | 0.0234 | |
|
| 0.0213 | 0.3218 | 35 | 0.0225 | |
|
| 0.0211 | 0.3678 | 40 | 0.0214 | |
|
| 0.0185 | 0.4138 | 45 | 0.0200 | |
|
| 0.0162 | 0.4598 | 50 | 0.0196 | |
|
| 0.0177 | 0.5057 | 55 | 0.0189 | |
|
| 0.0168 | 0.5517 | 60 | 0.0184 | |
|
| 0.017 | 0.5977 | 65 | 0.0182 | |
|
| 0.0143 | 0.6437 | 70 | 0.0177 | |
|
| 0.0143 | 0.6897 | 75 | 0.0176 | |
|
| 0.0155 | 0.7356 | 80 | 0.0176 | |
|
| 0.0162 | 0.7816 | 85 | 0.0169 | |
|
| 0.0164 | 0.8276 | 90 | 0.0164 | |
|
| 0.0154 | 0.8736 | 95 | 0.0162 | |
|
| 0.0164 | 0.9195 | 100 | 0.0159 | |
|
| 0.0156 | 0.9655 | 105 | 0.0160 | |
|
| 0.0145 | 1.0115 | 110 | 0.0159 | |
|
| 0.0133 | 1.0575 | 115 | 0.0156 | |
|
| 0.0126 | 1.1034 | 120 | 0.0155 | |
|
| 0.0145 | 1.1494 | 125 | 0.0154 | |
|
| 0.0125 | 1.1954 | 130 | 0.0150 | |
|
| 0.0122 | 1.2414 | 135 | 0.0148 | |
|
| 0.0127 | 1.2874 | 140 | 0.0147 | |
|
| 0.0139 | 1.3333 | 145 | 0.0144 | |
|
| 0.0122 | 1.3793 | 150 | 0.0144 | |
|
| 0.0138 | 1.4253 | 155 | 0.0139 | |
|
| 0.0143 | 1.4713 | 160 | 0.0139 | |
|
| 0.0124 | 1.5172 | 165 | 0.0138 | |
|
| 0.0124 | 1.5632 | 170 | 0.0135 | |
|
| 0.0138 | 1.6092 | 175 | 0.0132 | |
|
| 0.0112 | 1.6552 | 180 | 0.0136 | |
|
| 0.0102 | 1.7011 | 185 | 0.0135 | |
|
| 0.0135 | 1.7471 | 190 | 0.0133 | |
|
| 0.01 | 1.7931 | 195 | 0.0135 | |
|
| 0.0115 | 1.8391 | 200 | 0.0131 | |
|
| 0.0113 | 1.8851 | 205 | 0.0127 | |
|
| 0.0107 | 1.9310 | 210 | 0.0128 | |
|
| 0.0122 | 1.9770 | 215 | 0.0128 | |
|
| 0.0099 | 2.0230 | 220 | 0.0128 | |
|
| 0.0121 | 2.0690 | 225 | 0.0129 | |
|
| 0.0103 | 2.1149 | 230 | 0.0128 | |
|
| 0.01 | 2.1609 | 235 | 0.0127 | |
|
| 0.0089 | 2.2069 | 240 | 0.0127 | |
|
| 0.0089 | 2.2529 | 245 | 0.0127 | |
|
| 0.0105 | 2.2989 | 250 | 0.0125 | |
|
| 0.0093 | 2.3448 | 255 | 0.0124 | |
|
| 0.0097 | 2.3908 | 260 | 0.0126 | |
|
| 0.0091 | 2.4368 | 265 | 0.0126 | |
|
| 0.0095 | 2.4828 | 270 | 0.0124 | |
|
| 0.0094 | 2.5287 | 275 | 0.0123 | |
|
| 0.0092 | 2.5747 | 280 | 0.0119 | |
|
| 0.0084 | 2.6207 | 285 | 0.0121 | |
|
| 0.0098 | 2.6667 | 290 | 0.0120 | |
|
| 0.0097 | 2.7126 | 295 | 0.0122 | |
|
| 0.0093 | 2.7586 | 300 | 0.0121 | |
|
| 0.0096 | 2.8046 | 305 | 0.0119 | |
|
| 0.0097 | 2.8506 | 310 | 0.0117 | |
|
| 0.0101 | 2.8966 | 315 | 0.0118 | |
|
| 0.0088 | 2.9425 | 320 | 0.0118 | |
|
| 0.0096 | 2.9885 | 325 | 0.0118 | |
|
| 0.0078 | 3.0345 | 330 | 0.0119 | |
|
| 0.0064 | 3.0805 | 335 | 0.0119 | |
|
| 0.0073 | 3.1264 | 340 | 0.0121 | |
|
| 0.0066 | 3.1724 | 345 | 0.0121 | |
|
| 0.0067 | 3.2184 | 350 | 0.0117 | |
|
| 0.007 | 3.2644 | 355 | 0.0118 | |
|
| 0.0072 | 3.3103 | 360 | 0.0116 | |
|
| 0.0074 | 3.3563 | 365 | 0.0117 | |
|
| 0.0067 | 3.4023 | 370 | 0.0117 | |
|
| 0.0072 | 3.4483 | 375 | 0.0117 | |
|
| 0.0069 | 3.4943 | 380 | 0.0117 | |
|
| 0.0076 | 3.5402 | 385 | 0.0116 | |
|
| 0.0068 | 3.5862 | 390 | 0.0114 | |
|
| 0.0074 | 3.6322 | 395 | 0.0115 | |
|
| 0.0065 | 3.6782 | 400 | 0.0114 | |
|
| 0.007 | 3.7241 | 405 | 0.0112 | |
|
| 0.0064 | 3.7701 | 410 | 0.0112 | |
|
| 0.0073 | 3.8161 | 415 | 0.0111 | |
|
| 0.0065 | 3.8621 | 420 | 0.0113 | |
|
| 0.0069 | 3.9080 | 425 | 0.0111 | |
|
| 0.0065 | 3.9540 | 430 | 0.0111 | |
|
| 0.0076 | 4.0 | 435 | 0.0111 | |
|
| 0.0047 | 4.0460 | 440 | 0.0115 | |
|
| 0.0053 | 4.0920 | 445 | 0.0119 | |
|
| 0.0053 | 4.1379 | 450 | 0.0120 | |
|
| 0.0055 | 4.1839 | 455 | 0.0119 | |
|
| 0.0053 | 4.2299 | 460 | 0.0117 | |
|
| 0.0053 | 4.2759 | 465 | 0.0117 | |
|
| 0.0053 | 4.3218 | 470 | 0.0117 | |
|
| 0.0058 | 4.3678 | 475 | 0.0116 | |
|
| 0.0053 | 4.4138 | 480 | 0.0116 | |
|
| 0.0053 | 4.4598 | 485 | 0.0118 | |
|
| 0.0051 | 4.5057 | 490 | 0.0117 | |
|
| 0.0053 | 4.5517 | 495 | 0.0117 | |
|
| 0.0059 | 4.5977 | 500 | 0.0117 | |
|
| 0.0055 | 4.6437 | 505 | 0.0117 | |
|
| 0.0054 | 4.6897 | 510 | 0.0116 | |
|
| 0.0055 | 4.7356 | 515 | 0.0117 | |
|
| 0.0056 | 4.7816 | 520 | 0.0116 | |
|
| 0.0048 | 4.8276 | 525 | 0.0116 | |
|
| 0.0049 | 4.8736 | 530 | 0.0116 | |
|
| 0.0043 | 4.9195 | 535 | 0.0116 | |
|
| 0.0046 | 4.9655 | 540 | 0.0116 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.46.1 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |