metadata
license: mit
datasets:
- squad_v2
language:
- en
library_name: transformers
pipeline_tag: question-answering
tags:
- deberta
- deberta-v3
- question-answering
model-index:
- name: sjrhuschlee/deberta-v3-base-squad2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- type: exact_match
value: 85.648
name: Exact Match
- type: f1
value: 88.728
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squad
type: squad
config: plain_text
split: validation
metrics:
- type: exact_match
value: 87.862
name: Exact Match
- type: f1
value: 93.924
name: F1
deberta-v3-base for QA
This is the deberta-v3-base model, fine-tuned using the SQuAD2.0 dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering.
Overview
Language model: deberta-v3-base
Language: English
Downstream-task: Extractive QA
Training data: SQuAD 2.0
Eval data: SQuAD 2.0
Infrastructure: 1x NVIDIA 3070
Model Usage
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "sjrhuschlee/deberta-v3-base-squad2"
# a) Using pipelines
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
qa_input = {
'question': 'Where do I live?',
'context': 'My name is Sarah and I live in London'
}
res = nlp(qa_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
Metrics
# Squad v2
{
"eval_HasAns_exact": 82.72604588394061,
"eval_HasAns_f1": 88.89430905100325,
"eval_HasAns_total": 5928,
"eval_NoAns_exact": 88.56181665264928,
"eval_NoAns_f1": 88.56181665264928,
"eval_NoAns_total": 5945,
"eval_best_exact": 85.64810915522614,
"eval_best_exact_thresh": 0.0,
"eval_best_f1": 88.72782481717712,
"eval_best_f1_thresh": 0.0,
"eval_exact": 85.64810915522614,
"eval_f1": 88.72782481717726,
"eval_runtime": 219.6226,
"eval_samples": 11951,
"eval_samples_per_second": 54.416,
"eval_steps_per_second": 2.268,
"eval_total": 11873
}
# Squad
{
"eval_exact_match": 87.86187322611164,
"eval_f1": 93.92373735474943,
"eval_runtime": 195.2115,
"eval_samples": 10618,
"eval_samples_per_second": 54.392,
"eval_steps_per_second": 2.269
}
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4.0
Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3