|
--- |
|
license: mit |
|
datasets: |
|
- squad_v2 |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: question-answering |
|
tags: |
|
- deberta |
|
- deberta-v3 |
|
- question-answering |
|
model-index: |
|
- name: sjrhuschlee/deberta-v3-base-squad2 |
|
results: |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squad_v2 |
|
type: squad_v2 |
|
config: squad_v2 |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 85.648 |
|
name: Exact Match |
|
- type: f1 |
|
value: 88.728 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squad |
|
type: squad |
|
config: plain_text |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 87.862 |
|
name: Exact Match |
|
- type: f1 |
|
value: 93.924 |
|
name: F1 |
|
--- |
|
|
|
# deberta-v3-base for QA |
|
|
|
This is the [deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering. |
|
|
|
## Overview |
|
**Language model:** deberta-v3-base |
|
**Language:** English |
|
**Downstream-task:** Extractive QA |
|
**Training data:** SQuAD 2.0 |
|
**Eval data:** SQuAD 2.0 |
|
**Infrastructure**: 1x NVIDIA 3070 |
|
|
|
## Model Usage |
|
```python |
|
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline |
|
model_name = "sjrhuschlee/deberta-v3-base-squad2" |
|
|
|
# a) Using pipelines |
|
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) |
|
qa_input = { |
|
'question': 'Where do I live?', |
|
'context': 'My name is Sarah and I live in London' |
|
} |
|
res = nlp(qa_input) |
|
|
|
# b) Load model & tokenizer |
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
``` |
|
|
|
## Metrics |
|
|
|
```bash |
|
# Squad v2 |
|
{ |
|
"eval_HasAns_exact": 82.72604588394061, |
|
"eval_HasAns_f1": 88.89430905100325, |
|
"eval_HasAns_total": 5928, |
|
"eval_NoAns_exact": 88.56181665264928, |
|
"eval_NoAns_f1": 88.56181665264928, |
|
"eval_NoAns_total": 5945, |
|
"eval_best_exact": 85.64810915522614, |
|
"eval_best_exact_thresh": 0.0, |
|
"eval_best_f1": 88.72782481717712, |
|
"eval_best_f1_thresh": 0.0, |
|
"eval_exact": 85.64810915522614, |
|
"eval_f1": 88.72782481717726, |
|
"eval_runtime": 219.6226, |
|
"eval_samples": 11951, |
|
"eval_samples_per_second": 54.416, |
|
"eval_steps_per_second": 2.268, |
|
"eval_total": 11873 |
|
} |
|
|
|
# Squad |
|
{ |
|
"eval_exact_match": 87.86187322611164, |
|
"eval_f1": 93.92373735474943, |
|
"eval_runtime": 195.2115, |
|
"eval_samples": 10618, |
|
"eval_samples_per_second": 54.392, |
|
"eval_steps_per_second": 2.269 |
|
} |
|
``` |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 4.0 |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.0.dev0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|