protein-classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3403
  • Accuracy: 0.905

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 180 0.4654 0.855
No log 2.0 360 0.4703 0.835
0.521 3.0 540 0.3485 0.88
0.521 4.0 720 0.3523 0.865
0.521 5.0 900 0.3411 0.89
0.3122 6.0 1080 0.2946 0.91
0.3122 7.0 1260 0.3441 0.865
0.3122 8.0 1440 0.2862 0.915
0.2774 9.0 1620 0.3051 0.9
0.2774 10.0 1800 0.3358 0.895
0.2774 11.0 1980 0.3127 0.915
0.2688 12.0 2160 0.3054 0.895
0.2688 13.0 2340 0.3246 0.89
0.2316 14.0 2520 0.3374 0.91
0.2316 15.0 2700 0.4155 0.875
0.2316 16.0 2880 0.3715 0.885
0.2066 17.0 3060 0.3345 0.91
0.2066 18.0 3240 0.3400 0.9
0.2066 19.0 3420 0.3190 0.9
0.1893 20.0 3600 0.3084 0.915
0.1893 21.0 3780 0.3875 0.89
0.1893 22.0 3960 0.3599 0.89
0.1835 23.0 4140 0.3633 0.905
0.1835 24.0 4320 0.2984 0.905
0.1665 25.0 4500 0.3005 0.91
0.1665 26.0 4680 0.3371 0.915
0.1665 27.0 4860 0.3860 0.89
0.1627 28.0 5040 0.3110 0.915
0.1627 29.0 5220 0.3365 0.905
0.1627 30.0 5400 0.3403 0.905

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0
Downloads last month
108
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for skiba4/adm-vit-protein-classification

Finetuned
(1828)
this model