A.X Encoder

A.X Encoder Highlights
A.X Encoder (pronounced "A dot X") is SKT's document understanding model optimized for Korean-language understanding and enterprise deployment. This lightweight encoder was developed entirely in-house by SKT, encompassing model architecture, data curation, and training, all carried out on SKTβs proprietary supercomputing infrastructure, TITAN. This model utilizes the ModernBERT architecture, which supports flash attention and long-context processing.
- Longer Context: A.X Encoder supports long-context processing of up to 16,384 tokens.
- Faster Inference: A.X Encoder achieves up to 3x faster inference speed than earlier models.
- Superior Korean Language Understanding: A.X Encoder achieves superior performance on diverse Korean NLU tasks.
Core Technologies
A.X Encoder represents an efficient long document understanding model for processing a large-scale corpus, developed end-to-end by SKT.
This model plays a key role in data curation for A.X LLM by serving as a versatile document classifier, identifying features such as educational value, domain category, and difficulty level.
Benchmark Results
Model Inference Speed (Run on an A100 GPU)

Model Performance

Method | BoolQ (f1) | COPA (f1) | Sentineg (f1) | WiC (f1) | Avg. (KoBEST) |
---|---|---|---|---|---|
klue/roberta-base | 72.04 | 65.14 | 90.39 | 78.19 | 76.44 |
kakaobank/kf-deberta-base | 81.30 | 76.50 | 94.70 | 80.50 | 83.25 |
skt/A.X-Encoder-base | 84.50 | 78.70 | 96.00 | 80.80 | 85.50 |
Method | NLI (acc) | STS (f1) | YNAT (acc) | Avg. (KLUE) |
---|---|---|---|---|
klue/roberta-base | 84.53 | 84.57 | 86.48 | 85.19 |
kakaobank/kf-deberta-base | 86.10 | 84.30 | 87.00 | 85.80 |
skt/A.X-Encoder-base | 87.00 | 84.80 | 86.50 | 86.10 |
π Quickstart
with HuggingFace Transformers
transformers>=4.51.0
or the latest version is required to useskt/A.X-Encoder-base
pip install transformers>=4.51.0
β οΈ If your GPU supports it, we recommend using A.X Encoder with Flash Attention 2 to reach the highest efficiency. To do so, install Flash Attention as follows, then use the model as normal:
pip install flash-attn --no-build-isolation
Example Usage
Using AutoModelForMaskedLM:
import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM
model_id = "skt/A.X-Encoder-base"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForMaskedLM.from_pretrained(model_id, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16)
text = "νκ΅μ μλλ <mask>."
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
# To get predictions for the mask:
masked_index = inputs["input_ids"][0].tolist().index(tokenizer.mask_token_id)
predicted_token_id = outputs.logits[0, masked_index].argmax(axis=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print("Predicted token:", predicted_token)
# Predicted token: μμΈ
Using a pipeline:
import torch
from transformers import pipeline
from pprint import pprint
pipe = pipeline(
"fill-mask",
model="skt/A.X-Encoder-base",
torch_dtype=torch.bfloat16,
)
input_text = "νκ΅μ μλλ <mask>."
results = pipe(input_text)
pprint(results)
# [{'score': 0.07568359375,
# 'sequence': 'νκ΅μ μλλ μμΈ.',
# 'token': 31430,
# 'token_str': 'μμΈ'}, ...
License
The A.X Encoder
model is licensed under Apache License 2.0
.
Citation
@article{SKTAdotXEncoder-base,
title={A.X Encoder-base},
author={SKT AI Model Lab},
year={2025},
url={https://huggingface.co/skt/A.X-Encoder-base}
}
Contact
- Business & Partnership Contact: [email protected]
- Downloads last month
- 61
Collection including skt/A.X-Encoder-base
Evaluation results
- KoBESTself-reported85.500
- KLUEself-reported86.100