|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- VideoPinball-v4 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: DQN |
|
results: |
|
- metrics: |
|
- type: mean_reward |
|
value: 8997.20 +/- 6190.02 |
|
name: mean_reward |
|
task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: VideoPinball-v4 |
|
type: VideoPinball-v4 |
|
--- |
|
|
|
# **DQN** Agent playing **VideoPinball-v4** |
|
This is a trained model of a **DQN** agent playing **VideoPinball-v4** |
|
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) |
|
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). |
|
|
|
The RL Zoo is a training framework for Stable Baselines3 |
|
reinforcement learning agents, |
|
with hyperparameter optimization and pre-trained agents included. |
|
|
|
## Usage (with SB3 RL Zoo) |
|
|
|
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> |
|
SB3: https://github.com/DLR-RM/stable-baselines3<br/> |
|
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib |
|
|
|
``` |
|
# Download model and save it into the logs/ folder |
|
python -m utils.load_from_hub --algo dqn --env VideoPinball-v4 -orga skyline22 -f logs/ |
|
python enjoy.py --algo dqn --env VideoPinball-v4 -f logs/ |
|
``` |
|
|
|
## Training (with the RL Zoo) |
|
``` |
|
python train.py --algo dqn --env VideoPinball-v4 -f logs/ |
|
# Upload the model and generate video (when possible) |
|
python -m utils.push_to_hub --algo dqn --env VideoPinball-v4 -f logs/ -orga skyline22 |
|
``` |
|
|
|
## Hyperparameters |
|
```python |
|
OrderedDict([('batch_size', 32), |
|
('buffer_size', 100000), |
|
('env_wrapper', |
|
['stable_baselines3.common.atari_wrappers.AtariWrapper']), |
|
('exploration_final_eps', 0.01), |
|
('exploration_fraction', 0.1), |
|
('frame_stack', 4), |
|
('gradient_steps', 1), |
|
('learning_rate', 0.0001), |
|
('learning_starts', 100000), |
|
('n_timesteps', 10000000.0), |
|
('optimize_memory_usage', True), |
|
('policy', 'CnnPolicy'), |
|
('target_update_interval', 1000), |
|
('train_freq', 4), |
|
('normalize', False)]) |
|
``` |
|
|