Built with Axolotl

See axolotl config

axolotl version: 0.5.2

base_model: mistralai/Mistral-7B-v0.1
model_type: AutoModelForCausalLM
tokenizer_config: Open-Orca/Mistral-7B-OpenOrca
tokenizer_type: AutoTokenizer
tokenizer_use_fast: false
resize_token_embeddings_to_32x: false

flash_attention: true
xformers_attention:

load_in_8bit: false
load_in_4bit: false
strict: false

chat_template: chatml
datasets:
  - path: skymizer/Sonnet3.5-SlimOrcaDedupCleaned-train
    type: chat_template
    field_messages: messages

test_datasets:
  - path: skymizer/Sonnet3.5-SlimOrcaDedupCleaned-test
    type: chat_template
    field_messages: messages
    split: train

hf_use_auth_token: true
dataset_prepared_path: pretokenized/slim-orca
output_dir: ./exp_output_artifacts

sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true

eval_sample_packing: false
# eval_causal_lm_metrics: ["perplexity"]

wandb_project: "axolotl_mistral_sft"
wandb_entity:
wandb_watch:
wandb_name: "mistral-7B-v0.1-q-spase-v7-on-slim-orca-longer"
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 16
eval_batch_size: 1
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.000005
warmup_ratio: 0.03
cosine_min_lr_ratio: 0.05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.95
adam_eps: 0.000001
max_grad_norm: 1.0

train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false

hub_model_id: "skymizer/mistral-7B-v0.1-q-sparse-v7-on-slim-orca-longer"

save_strategy: "steps"
save_steps: 100

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1

eval_steps: 50
eval_table_size:
eval_max_new_tokens: 2048
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
seed: 42

mistral-7B-v0.1-q-sparse-v7-on-slim-orca-longer

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8195

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 35
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
11.9413 0.0026 1 11.9233
6.9838 0.1277 50 6.8541
4.4134 0.2554 100 4.1669
2.4007 0.3831 150 2.3010
1.8395 0.5109 200 1.7859
1.5379 0.6386 250 1.5368
1.4082 0.7663 300 1.3234
1.2393 0.8940 350 1.2109
1.1378 1.0217 400 1.1401
1.0708 1.1494 450 1.0649
1.0354 1.2771 500 1.0288
1.0125 1.4049 550 0.9793
0.9736 1.5326 600 0.9478
0.9564 1.6603 650 0.9224
0.8883 1.7880 700 0.8997
0.8874 1.9157 750 0.8786
0.8209 2.0434 800 0.8632
0.7871 2.1711 850 0.8536
0.7876 2.2989 900 0.8447
0.7786 2.4266 950 0.8399
0.7749 2.5543 1000 0.8320
0.7688 2.6820 1050 0.8262
0.7247 2.8097 1100 0.8234
0.7637 2.9374 1150 0.8195

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
41
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for skymizer/mistral-7B-v0.1-q-sparse-v7-on-slim-orca-longer

Finetuned
(817)
this model
Quantizations
2 models