slickdata's picture
update model card README.md
9306f16
|
raw
history blame
1.44 kB
metadata
license: mit
tags:
  - generated_from_trainer
model-index:
  - name: finetuned-Sentiment-classfication-ROBERTA-model
    results: []

finetuned-Sentiment-classfication-ROBERTA-model

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6126
  • Rmse: 0.6362

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Rmse
0.6393 4.0 500 0.6126 0.6362

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3