metadata
language:
- myv
- ru
- fi
- de
- es
- en
- hi
- zh
- tr
- uk
- fr
- ar
tags:
- erzya
- mordovian
- translation
license: cc-by-sa-4.0
datasets:
- slone/myv_ru_2022
- yhavinga/ccmatrix
This a model to translate texts from the Erzya language (myv
, cyrillic script) to 11 other languages: ru,fi,de,es,en,hi,zh,tr,uk,fr,ar
. See its demo!
It is described in the paper The first neural machine translation system for the Erzya language.
This model is based on facebook/mbart-large-50, but with updated vocabulary and checkpoint:
- Added an extra language token
myv_XX
and 19K new BPE tokens for the Erzya language; - Fine-tuned to translate to Erzya: first from Russian, then from all 11 languages.
The following code can be used to run translation using the model:
from transformers import MBartForConditionalGeneration, MBart50Tokenizer
def fix_tokenizer(tokenizer):
""" Add a new language token to the tokenizer vocabulary (this should be done each time after its initialization) """
old_len = len(tokenizer) - int('myv_XX' in tokenizer.added_tokens_encoder)
tokenizer.lang_code_to_id['myv_XX'] = old_len-1
tokenizer.id_to_lang_code[old_len-1] = 'myv_XX'
tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
if 'myv_XX' not in tokenizer._additional_special_tokens:
tokenizer._additional_special_tokens.append('myv_XX')
tokenizer.added_tokens_encoder = {}
def translate(text, model, tokenizer, src='ru_RU', trg='myv_XX', max_length='auto', num_beams=3, repetition_penalty=5.0, train_mode=False, n_out=None, **kwargs):
tokenizer.src_lang = src
encoded = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024)
if max_length == 'auto':
max_length = int(32 + 1.5 * encoded.input_ids.shape[1])
if train_mode:
model.train()
else:
model.eval()
generated_tokens = model.generate(
**encoded.to(model.device),
forced_bos_token_id=tokenizer.lang_code_to_id[trg],
max_length=max_length,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
num_return_sequences=n_out or 1,
**kwargs
)
out = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
if isinstance(text, str) and n_out is None:
return out[0]
return out
mname = 'slone/mbart-large-51-mul-myv-v1'
model = MBartForConditionalGeneration.from_pretrained(mname)
tokenizer = MBart50Tokenizer.from_pretrained(mname)
fix_tokenizer(tokenizer)
print(translate('Привет, собака!', model, tokenizer, src='ru_RU', trg='myv_XX'))
# Шумбрат, киска! # действительно, по-эрзянски собака именно так
print(translate('Hello, doggy!', model, tokenizer, src='en_XX', trg='myv_XX'))
# Шумбрат, киска!