|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-large_v2-asd_v1 |
|
results: [] |
|
datasets: |
|
- slplab/asd_apac |
|
language: |
|
- ko |
|
pipeline_tag: automatic-speech-recognition |
|
duplicated_from: slplab/whisper-large_v2-asd_v1 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-large_v2-asd_v1 |
|
|
|
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on [slplab/asd_apac](https://huggingface.co/slplab/asd_apac) dataset. |
|
It achieves the following results on the validation set: |
|
- Loss: 0.8553 |
|
- Wer: 78.4722 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:| |
|
| 0.0617 | 10.53 | 100 | 0.6858 | 81.9444 | |
|
| 0.004 | 21.05 | 200 | 0.7322 | 79.8611 | |
|
| 0.0005 | 31.58 | 300 | 0.7923 | 80.5556 | |
|
| 0.0003 | 42.11 | 400 | 0.8131 | 79.1667 | |
|
| 0.0002 | 52.63 | 500 | 0.8263 | 76.7361 | |
|
| 0.0002 | 63.16 | 600 | 0.8365 | 77.4306 | |
|
| 0.0002 | 73.68 | 700 | 0.8451 | 78.4722 | |
|
| 0.0002 | 84.21 | 800 | 0.8503 | 78.4722 | |
|
| 0.0002 | 94.74 | 900 | 0.8541 | 78.4722 | |
|
| 0.0002 | 105.26 | 1000 | 0.8553 | 78.4722 | |
|
|
|
### Test results |
|
|
|
- Loss: 0.6359 |
|
- Wer: 36.6876 |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0.dev0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |