peft-lora-starcoder15B-personal-copilot-A100-40GB-colab

This model is a fine-tuned version of bigcode/starcoder on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3633

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_steps: 30
  • training_steps: 2000

Training results

Training Loss Epoch Step Validation Loss
0.6593 0.05 100 0.5847
0.6226 0.1 200 0.5292
0.6597 0.15 300 0.4814
0.5523 0.2 400 0.4617
0.4856 0.25 500 0.4597
0.5237 0.3 600 0.4505
0.4894 0.35 700 0.4398
0.5579 0.4 800 0.4377
0.4702 0.45 900 0.4322
0.5418 0.5 1000 0.4244
0.5159 0.55 1100 0.4133
0.524 0.6 1200 0.3977
0.4138 0.65 1300 0.3966
0.5572 0.7 1400 0.3936
0.4146 0.75 1500 0.3904
0.7927 0.8 1600 0.3905
0.4131 0.85 1700 0.3866
0.4552 0.9 1800 0.3881
0.3914 0.95 1900 0.3794
0.4945 1.0 2000 0.3633

Framework versions

  • PEFT 0.5.0.dev0
  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for smangrul/peft-lora-starcoder15B-personal-copilot-A100-40GB-colab

Base model

bigcode/starcoder
Adapter
(34)
this model