File size: 15,586 Bytes
1813142
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fee11cb5900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fee11ca3400>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685937491701212680, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAG1ntPiu8qb1ug8U+G1ntPiu8qb1ug8U+G1ntPiu8qb1ug8U+G1ntPiu8qb1ug8U+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/XiZPu9MNr4NKK2/+pnTv24FG72z9rk/Ad+1PxX0zz9mWcg/cZ2xv/B/or/NkGa/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAbWe0+K7ypvW6DxT6wnBY94KBAvAgrbzwbWe0+K7ypvW6DxT6wnBY94KBAvAgrbzwbWe0+K7ypvW6DxT6wnBY94KBAvAgrbzwbWe0+K7ypvW6DxT6wnBY94KBAvAgrbzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.46357045 -0.08287843  0.38576835]\n [ 0.46357045 -0.08287843  0.38576835]\n [ 0.46357045 -0.08287843  0.38576835]\n [ 0.46357045 -0.08287843  0.38576835]]", "desired_goal": "[[ 0.2997512  -0.17802785 -1.3527848 ]\n [-1.6531365  -0.03784698  1.4528412 ]\n [ 1.420868    1.6246363   1.5652282 ]\n [-1.3876172  -1.2695293  -0.900647  ]]", "observation": "[[ 0.46357045 -0.08287843  0.38576835  0.03677052 -0.01175711  0.01459766]\n [ 0.46357045 -0.08287843  0.38576835  0.03677052 -0.01175711  0.01459766]\n [ 0.46357045 -0.08287843  0.38576835  0.03677052 -0.01175711  0.01459766]\n [ 0.46357045 -0.08287843  0.38576835  0.03677052 -0.01175711  0.01459766]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyIR3PeQ9lT00fcc9DC22vaiVoz2ssho9HGVzvYwgiT3CqY49RosWPiOflb2Mx649lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.06042936  0.07287195  0.09740677]\n [-0.08895311  0.07987529  0.03776805]\n [-0.0594226   0.06695661  0.06965972]\n [ 0.14701566 -0.07305744  0.08534154]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVd/5RQnKGcCUhpRSlIwBbJRLMowBdJRHQLVxkagVXV91fZQoaAZoCWgPQwhdaoR+pgY0wJSGlFKUaBVLMmgWR0C1cXWFFlTWdX2UKGgGaAloD0MITfkQVI2+GcCUhpRSlGgVSzJoFkdAtXFZMK1G9nV9lChoBmgJaA9DCGn/A6xVqx/AlIaUUpRoFUsyaBZHQLVxPQnQY1p1fZQoaAZoCWgPQwhcOXtntKUTwJSGlFKUaBVLMmgWR0C1ck/ICEHudX2UKGgGaAloD0MI7IhDNpC+FMCUhpRSlGgVSzJoFkdAtXIzXe3x4XV9lChoBmgJaA9DCP+SVKaY2zDAlIaUUpRoFUsyaBZHQLVyF0nw5Np1fZQoaAZoCWgPQwi1NLdCWO0gwJSGlFKUaBVLMmgWR0C1cfsTviLmdX2UKGgGaAloD0MIguFcwwwdFcCUhpRSlGgVSzJoFkdAtXMfaJyhjHV9lChoBmgJaA9DCM7hWu1hOzDAlIaUUpRoFUsyaBZHQLVzA0p3HJd1fZQoaAZoCWgPQwhBuAIK9bwywJSGlFKUaBVLMmgWR0C1cuc5jpcHdX2UKGgGaAloD0MIKlWi7C21HsCUhpRSlGgVSzJoFkdAtXLL6nBLwnV9lChoBmgJaA9DCJPGaB1VvRnAlIaUUpRoFUsyaBZHQLVzrhePaL51fZQoaAZoCWgPQwjEfHkB9uEbwJSGlFKUaBVLMmgWR0C1c5HZ00WNdX2UKGgGaAloD0MILjvEP2z5MMCUhpRSlGgVSzJoFkdAtXN1WaMJhXV9lChoBmgJaA9DCF2/YDds6xjAlIaUUpRoFUsyaBZHQLVzWQOFxn51fZQoaAZoCWgPQwjsTneeePYuwJSGlFKUaBVLMmgWR0C1dB69CeEqdX2UKGgGaAloD0MIptb7jXYcI8CUhpRSlGgVSzJoFkdAtXQCEqUeMnV9lChoBmgJaA9DCGR1q+ekazDAlIaUUpRoFUsyaBZHQLVz5YJVsDZ1fZQoaAZoCWgPQwheFD3wMZAkwJSGlFKUaBVLMmgWR0C1c8l2eQMhdX2UKGgGaAloD0MI0uKMYU6AIsCUhpRSlGgVSzJoFkdAtXSRQm/nGXV9lChoBmgJaA9DCHl0IywqAhvAlIaUUpRoFUsyaBZHQLV0dQemvW91fZQoaAZoCWgPQwjG4cyv5swywJSGlFKUaBVLMmgWR0C1dFkFW4mUdX2UKGgGaAloD0MI7fDXZI2KGMCUhpRSlGgVSzJoFkdAtXQ89B8hLXV9lChoBmgJaA9DCEoofSHk3BPAlIaUUpRoFUsyaBZHQLV1DGEPDpF1fZQoaAZoCWgPQwj/y7VoAWIgwJSGlFKUaBVLMmgWR0C1dPAuqWC3dX2UKGgGaAloD0MIpBe1+1UgH8CUhpRSlGgVSzJoFkdAtXTTsIE8rHV9lChoBmgJaA9DCGFVvfxOwyTAlIaUUpRoFUsyaBZHQLV0t4gieNF1fZQoaAZoCWgPQwhegehJmfQfwJSGlFKUaBVLMmgWR0C1dYK7I1cddX2UKGgGaAloD0MIx0YgXtevLcCUhpRSlGgVSzJoFkdAtXVmNJe3QXV9lChoBmgJaA9DCCpY42w6DjPAlIaUUpRoFUsyaBZHQLV1ScOskpt1fZQoaAZoCWgPQwj7WMFvQ3wuwJSGlFKUaBVLMmgWR0C1dS1zdUKidX2UKGgGaAloD0MILuI7MevVE8CUhpRSlGgVSzJoFkdAtXX0d0aIe3V9lChoBmgJaA9DCK5i8ZvCGiPAlIaUUpRoFUsyaBZHQLV11+o99tx1fZQoaAZoCWgPQwjZtb3dkmwhwJSGlFKUaBVLMmgWR0C1dbt2C/XYdX2UKGgGaAloD0MIyyxCsRWkNMCUhpRSlGgVSzJoFkdAtXWfV5KODXV9lChoBmgJaA9DCM4AF2TLXjbAlIaUUpRoFUsyaBZHQLV2bWHUMG51fZQoaAZoCWgPQwg4Ef3a+pkhwJSGlFKUaBVLMmgWR0C1dlDM7lq8dX2UKGgGaAloD0MIqgoNxLKhK8CUhpRSlGgVSzJoFkdAtXY0f0VafXV9lChoBmgJaA9DCJ1GWipvRxzAlIaUUpRoFUsyaBZHQLV2GIRywOh1fZQoaAZoCWgPQwg34PPDCOEowJSGlFKUaBVLMmgWR0C1dteXNTtLdX2UKGgGaAloD0MIhEpcx7iCEsCUhpRSlGgVSzJoFkdAtXa7OY6XB3V9lChoBmgJaA9DCGuCqPsA1CDAlIaUUpRoFUsyaBZHQLV2npxWDHx1fZQoaAZoCWgPQwj6sx8pIlMewJSGlFKUaBVLMmgWR0C1doIt6HCXdX2UKGgGaAloD0MI4dIx5xmLF8CUhpRSlGgVSzJoFkdAtXdE6r/823V9lChoBmgJaA9DCDI6IAn7cjjAlIaUUpRoFUsyaBZHQLV3KGA08/51fZQoaAZoCWgPQwhnRj8aTvkbwJSGlFKUaBVLMmgWR0C1dwvEsJ6ZdX2UKGgGaAloD0MIGvonuFgJIsCUhpRSlGgVSzJoFkdAtXbvcBU70XV9lChoBmgJaA9DCOer5GN3YSnAlIaUUpRoFUsyaBZHQLV3qgCwKSh1fZQoaAZoCWgPQwiuEFZjCSsuwJSGlFKUaBVLMmgWR0C1d41RHf/FdX2UKGgGaAloD0MIj6m7sgtGGsCUhpRSlGgVSzJoFkdAtXdwurZJ1HV9lChoBmgJaA9DCPyNdtzw2xPAlIaUUpRoFUsyaBZHQLV3VE1l5GB1fZQoaAZoCWgPQwhf7pOjAEEvwJSGlFKUaBVLMmgWR0C1eBEHY6GQdX2UKGgGaAloD0MID5vIzAX2I8CUhpRSlGgVSzJoFkdAtXf0Yzi0fHV9lChoBmgJaA9DCG07bY0I5hzAlIaUUpRoFUsyaBZHQLV318wYced1fZQoaAZoCWgPQwgy6ITQQTcTwJSGlFKUaBVLMmgWR0C1d7trXUYsdX2UKGgGaAloD0MIELBW7ZpwF8CUhpRSlGgVSzJoFkdAtXiHCJoCdXV9lChoBmgJaA9DCD8BFCNLBhbAlIaUUpRoFUsyaBZHQLV4alpoK2N1fZQoaAZoCWgPQwjII7iRsmUhwJSGlFKUaBVLMmgWR0C1eE3Z5AyEdX2UKGgGaAloD0MIaAQb178rGsCUhpRSlGgVSzJoFkdAtXgxZid8RnV9lChoBmgJaA9DCE7TZwdcjyzAlIaUUpRoFUsyaBZHQLV49QBPsRh1fZQoaAZoCWgPQwiLi6NyE6UdwJSGlFKUaBVLMmgWR0C1eNhVU+9rdX2UKGgGaAloD0MIisxc4PLwJMCUhpRSlGgVSzJoFkdAtXi7va11GXV9lChoBmgJaA9DCH5Rgv5CTxzAlIaUUpRoFUsyaBZHQLV4n0nw5Np1fZQoaAZoCWgPQwiH3uLhPRcXwJSGlFKUaBVLMmgWR0C1eXK0+kgwdX2UKGgGaAloD0MIUtfa+1QVFcCUhpRSlGgVSzJoFkdAtXlWQXAM2HV9lChoBmgJaA9DCDV8C+vGyx/AlIaUUpRoFUsyaBZHQLV5OalUIcB1fZQoaAZoCWgPQwgaTwRxHq4jwJSGlFKUaBVLMmgWR0C1eR1Iy0rtdX2UKGgGaAloD0MIl6yKcJNZJsCUhpRSlGgVSzJoFkdAtXnrZCfHxXV9lChoBmgJaA9DCAcnol9b7xLAlIaUUpRoFUsyaBZHQLV5ztm+TNd1fZQoaAZoCWgPQwilhGBVvYwqwJSGlFKUaBVLMmgWR0C1ebKfra/RdX2UKGgGaAloD0MIqkTZW8qRI8CUhpRSlGgVSzJoFkdAtXmWgBcRlHV9lChoBmgJaA9DCBwpWyTtlinAlIaUUpRoFUsyaBZHQLV6YcGkep51fZQoaAZoCWgPQwi2L6AX7rwRwJSGlFKUaBVLMmgWR0C1ekVMuez2dX2UKGgGaAloD0MIbeUl/5PvIMCUhpRSlGgVSzJoFkdAtXoosf7rLXV9lChoBmgJaA9DCPG8VGzMIyHAlIaUUpRoFUsyaBZHQLV6DER8MNN1fZQoaAZoCWgPQwh7Mv/om9QPwJSGlFKUaBVLMmgWR0C1etIUJv5ydX2UKGgGaAloD0MI8+SaApktIMCUhpRSlGgVSzJoFkdAtXq1YU34sXV9lChoBmgJaA9DCKEPlrGhKxnAlIaUUpRoFUsyaBZHQLV6mMbWEsd1fZQoaAZoCWgPQwh1IOup1Q8lwJSGlFKUaBVLMmgWR0C1enxwQ176dX2UKGgGaAloD0MIVu9wOzRIMMCUhpRSlGgVSzJoFkdAtXtK/47A+XV9lChoBmgJaA9DCOihtg2jRDTAlIaUUpRoFUsyaBZHQLV7LnQID5l1fZQoaAZoCWgPQwhTQrCqXr4lwJSGlFKUaBVLMmgWR0C1exHeFcptdX2UKGgGaAloD0MIGCMShZZlFcCUhpRSlGgVSzJoFkdAtXr1ic5Ke3V9lChoBmgJaA9DCOkmMQisBCLAlIaUUpRoFUsyaBZHQLV7tGWUr091fZQoaAZoCWgPQwjt0obD0nAdwJSGlFKUaBVLMmgWR0C1e5e2y9mIdX2UKGgGaAloD0MIkx0bgXhlIsCUhpRSlGgVSzJoFkdAtXt7GuLaVXV9lChoBmgJaA9DCHuFBfcDRiXAlIaUUpRoFUsyaBZHQLV7XtOmBOJ1fZQoaAZoCWgPQwgjS+ZY3hUvwJSGlFKUaBVLMmgWR0C1fCRjjJdTdX2UKGgGaAloD0MI1J6Sc2KnLcCUhpRSlGgVSzJoFkdAtXwH2ZiNKnV9lChoBmgJaA9DCLL0oQvqGxrAlIaUUpRoFUsyaBZHQLV760Re1KJ1fZQoaAZoCWgPQwgEOL2L9wMuwJSGlFKUaBVLMmgWR0C1e87OzIFNdX2UKGgGaAloD0MI8tO4N7+pKMCUhpRSlGgVSzJoFkdAtXyTjABT43V9lChoBmgJaA9DCAIoRpbMERfAlIaUUpRoFUsyaBZHQLV8dxFAmiR1fZQoaAZoCWgPQwhnfcoxWVwdwJSGlFKUaBVLMmgWR0C1fFp8F6iTdX2UKGgGaAloD0MIavtXVpr8JMCUhpRSlGgVSzJoFkdAtXw+N+9alnV9lChoBmgJaA9DCODaiZKQbDDAlIaUUpRoFUsyaBZHQLV8+TwlSjx1fZQoaAZoCWgPQwh9s82N6akTwJSGlFKUaBVLMmgWR0C1fNyOearndX2UKGgGaAloD0MImFDB4QWxHMCUhpRSlGgVSzJoFkdAtXy/8R+SbHV9lChoBmgJaA9DCANckC3LxyDAlIaUUpRoFUsyaBZHQLV8o9/jKgZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}