smarquie commited on
Commit
1813142
1 Parent(s): 4203e87

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -8.52 +/- 1.59
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -9.91 +/- 3.80
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3f84c3ca725173e0ac1d692ab7cce7d05850ed00b24dc626fc1edfe1b516af7d
3
- size 108040
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:001b5bb733e96edd115c920b9cce2303592541c76e817df742472c8b0d129986
3
+ size 108076
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0d36be2b00>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7f0d36be5cc0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -19,12 +19,12 @@
19
  "weight_decay": 0
20
  }
21
  },
22
- "num_timesteps": 4000000,
23
- "_total_timesteps": 4000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
- "start_time": 1685818302686248733,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
@@ -33,10 +33,10 @@
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAARsfdPnkN5j2/5ac+RsfdPnkN5j2/5ac+RsfdPnkN5j2/5ac+RsfdPnkN5j2/5ac+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQeWQPwyJ0T8GE4Y/oGt0P3W00L/nTr6//3uTP+tbJ7++sro/bbAbPx7ATr6BKbA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABGx90+eQ3mPb/lpz5Xb1U9r6gVPCToAz1Gx90+eQ3mPb/lpz5Xb1U9r6gVPCToAz1Gx90+eQ3mPb/lpz5Xb1U9r6gVPCToAz1Gx90+eQ3mPb/lpz5Xb1U9r6gVPCToAz2UaA5LBEsGhpRoEnSUUpR1Lg==",
37
- "achieved_goal": "[[0.43316096 0.11233038 0.3279247 ]\n [0.43316096 0.11233038 0.3279247 ]\n [0.43316096 0.11233038 0.3279247 ]\n [0.43316096 0.11233038 0.3279247 ]]",
38
- "desired_goal": "[[ 1.1319963 1.6369948 1.0474555 ]\n [ 0.9547672 -1.6305071 -1.4867829 ]\n [ 1.1522216 -0.6537463 1.4585798 ]\n [ 0.6081608 -0.20190474 1.3762666 ]]",
39
- "observation": "[[0.43316096 0.11233038 0.3279247 0.05210814 0.00913446 0.03220381]\n [0.43316096 0.11233038 0.3279247 0.05210814 0.00913446 0.03220381]\n [0.43316096 0.11233038 0.3279247 0.05210814 0.00913446 0.03220381]\n [0.43316096 0.11233038 0.3279247 0.05210814 0.00913446 0.03220381]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
@@ -44,9 +44,9 @@
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7pI3vdwUvb0G3zk+hICYPHpmC74S24k+hvPivaHuA74lMXY9yGRPvavfKj0dSPk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
- "desired_goal": "[[-0.04481786 -0.09232494 0.18151483]\n [ 0.01861597 -0.1361331 0.2692495 ]\n [-0.11081605 -0.12883998 0.06010546]\n [-0.05063322 0.04171721 0.12171958]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
@@ -56,13 +56,13 @@
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHcu76gETE8CUhpRSlIwBbJRLMowBdJRHQMTnfPkili11fZQoaAZoCWgPQwgPJsXHJ8QdwJSGlFKUaBVLMmgWR0DE524yAQQMdX2UKGgGaAloD0MIFEIHXcIhFMCUhpRSlGgVSzJoFkdAxOdf9Wp6yHV9lChoBmgJaA9DCJrS+lsCCCLAlIaUUpRoFUsyaBZHQMTnUNBfKIV1fZQoaAZoCWgPQwiGN2vwvuoawJSGlFKUaBVLMmgWR0DE57cTBZZCdX2UKGgGaAloD0MIiIIZU7DeIsCUhpRSlGgVSzJoFkdAxOeoQ8wHq3V9lChoBmgJaA9DCFMGDmjpShrAlIaUUpRoFUsyaBZHQMTnmgrH2h91fZQoaAZoCWgPQwgFM6ZgjQMWwJSGlFKUaBVLMmgWR0DE54rPIGQkdX2UKGgGaAloD0MIK4VALnF0H8CUhpRSlGgVSzJoFkdAxOfwHBUJfXV9lChoBmgJaA9DCKdc4V0uIh7AlIaUUpRoFUsyaBZHQMTn4U/wAlx1fZQoaAZoCWgPQwhnuWx0zk8hwJSGlFKUaBVLMmgWR0DE59MkleF+dX2UKGgGaAloD0MIbNCX3v68GMCUhpRSlGgVSzJoFkdAxOfD8MuvlnV9lChoBmgJaA9DCHui68IPXhTAlIaUUpRoFUsyaBZHQMToLT72tdR1fZQoaAZoCWgPQwjIl1DB4eUfwJSGlFKUaBVLMmgWR0DE6B6RB/qgdX2UKGgGaAloD0MIvB+3Xz6pHcCUhpRSlGgVSzJoFkdAxOgQcf/3nXV9lChoBmgJaA9DCA2Oklfn2BfAlIaUUpRoFUsyaBZHQMToAVBdD6Z1fZQoaAZoCWgPQwi/Yg0XuWcmwJSGlFKUaBVLMmgWR0DE6GcYQ8OkdX2UKGgGaAloD0MIyAp+G2IMIMCUhpRSlGgVSzJoFkdAxOhYZML4OHV9lChoBmgJaA9DCJrpXif1xSLAlIaUUpRoFUsyaBZHQMToSjRD1Gt1fZQoaAZoCWgPQwht/8pKk0InwJSGlFKUaBVLMmgWR0DE6Dr212JSdX2UKGgGaAloD0MIERjrG5i8IcCUhpRSlGgVSzJoFkdAxOin1SwW33V9lChoBmgJaA9DCPWAeciUjx/AlIaUUpRoFUsyaBZHQMTomROclPd1fZQoaAZoCWgPQwjvOEVHcqkbwJSGlFKUaBVLMmgWR0DE6IrxgAp8dX2UKGgGaAloD0MITihEwCE0FMCUhpRSlGgVSzJoFkdAxOh7rJKaonV9lChoBmgJaA9DCG/W4H1V3iXAlIaUUpRoFUsyaBZHQMTo5a7ulXR1fZQoaAZoCWgPQwjIfECgM1kcwJSGlFKUaBVLMmgWR0DE6NbbnHNpdX2UKGgGaAloD0MI5Uf8ijW0I8CUhpRSlGgVSzJoFkdAxOjIqjJuEXV9lChoBmgJaA9DCAEVjiCV4h/AlIaUUpRoFUsyaBZHQMTouW3KB/Z1fZQoaAZoCWgPQwjFyJI5lvcRwJSGlFKUaBVLMmgWR0DE6R50W/JvdX2UKGgGaAloD0MICK7yBMIeGMCUhpRSlGgVSzJoFkdAxOkPpnHvMXV9lChoBmgJaA9DCFr1udqKBSTAlIaUUpRoFUsyaBZHQMTpAXHq/ud1fZQoaAZoCWgPQwiYwK27eZohwJSGlFKUaBVLMmgWR0DE6PI3xWkrdX2UKGgGaAloD0MIvvp46LurIMCUhpRSlGgVSzJoFkdAxOlZvH93r3V9lChoBmgJaA9DCPuVzodniSfAlIaUUpRoFUsyaBZHQMTpSuh0yQB1fZQoaAZoCWgPQwgNN+Dzw5AiwJSGlFKUaBVLMmgWR0DE6TzE74i5dX2UKGgGaAloD0MIwwyNJ4L4HcCUhpRSlGgVSzJoFkdAxOktd1uBMHV9lChoBmgJaA9DCBDqIoWygBXAlIaUUpRoFUsyaBZHQMTpkW2XsxB1fZQoaAZoCWgPQwjK4v4j07khwJSGlFKUaBVLMmgWR0DE6YKjHn2adX2UKGgGaAloD0MIsOjWa3poIMCUhpRSlGgVSzJoFkdAxOl0bNr0rnV9lChoBmgJaA9DCN0kBoGVwxXAlIaUUpRoFUsyaBZHQMTpZR51Ng11fZQoaAZoCWgPQwiMEYlCywodwJSGlFKUaBVLMmgWR0DE6cm2kSEldX2UKGgGaAloD0MIMQisHFpkI8CUhpRSlGgVSzJoFkdAxOm65+Ytx3V9lChoBmgJaA9DCGsRUUzeCCTAlIaUUpRoFUsyaBZHQMTprLI5o5B1fZQoaAZoCWgPQwjThVj9EYYnwJSGlFKUaBVLMmgWR0DE6Z1gnc+JdX2UKGgGaAloD0MIF+/H7ZevE8CUhpRSlGgVSzJoFkdAxOn+rjo6jnV9lChoBmgJaA9DCE59IHnngBjAlIaUUpRoFUsyaBZHQMTp79hy8z11fZQoaAZoCWgPQwipnzcVqcAdwJSGlFKUaBVLMmgWR0DE6eGez2OAdX2UKGgGaAloD0MIfzMxXYg1F8CUhpRSlGgVSzJoFkdAxOnSaJAMUnV9lChoBmgJaA9DCCO70jJSryTAlIaUUpRoFUsyaBZHQMTqOqzZ6D51fZQoaAZoCWgPQwiw5CoWv5kXwJSGlFKUaBVLMmgWR0DE6ivpfQa8dX2UKGgGaAloD0MIg7709udyH8CUhpRSlGgVSzJoFkdAxOodra/RFHV9lChoBmgJaA9DCPnWh/VGXRfAlIaUUpRoFUsyaBZHQMTqDmhdt2t1fZQoaAZoCWgPQwh9XBsqxikewJSGlFKUaBVLMmgWR0DE6nE6DGtIdX2UKGgGaAloD0MI9bhvtU6cIcCUhpRSlGgVSzJoFkdAxOpiYWtU43V9lChoBmgJaA9DCF6+9WG9URnAlIaUUpRoFUsyaBZHQMTqVEo4MnZ1fZQoaAZoCWgPQwiMnlvoSmwhwJSGlFKUaBVLMmgWR0DE6kT9OymidX2UKGgGaAloD0MIPV+zXDZyJcCUhpRSlGgVSzJoFkdAxOqqDB/I83V9lChoBmgJaA9DCLcqieyDfCfAlIaUUpRoFUsyaBZHQMTqmziCJ411fZQoaAZoCWgPQwj3ViQmqLEawJSGlFKUaBVLMmgWR0DE6o0AaNuMdX2UKGgGaAloD0MIh4cwfhp3IMCUhpRSlGgVSzJoFkdAxOp9wLE1mHV9lChoBmgJaA9DCI5bzM8NNSPAlIaUUpRoFUsyaBZHQMTq5K4QSSN1fZQoaAZoCWgPQwhOKhprf5ccwJSGlFKUaBVLMmgWR0DE6tXyup0fdX2UKGgGaAloD0MIU1kUdlFEHsCUhpRSlGgVSzJoFkdAxOrHvd/KAHV9lChoBmgJaA9DCDv7yoP0TCPAlIaUUpRoFUsyaBZHQMTquGlQ/HJ1fZQoaAZoCWgPQwgyAFRx4zYTwJSGlFKUaBVLMmgWR0DE6x7rAxi5dX2UKGgGaAloD0MITb7Z5sbUEcCUhpRSlGgVSzJoFkdAxOsQKP4mC3V9lChoBmgJaA9DCGnlXmBWqCbAlIaUUpRoFUsyaBZHQMTrAeuV5bB1fZQoaAZoCWgPQwi5jJsaaOYhwJSGlFKUaBVLMmgWR0DE6vKZjQRgdX2UKGgGaAloD0MIREyJJHohIMCUhpRSlGgVSzJoFkdAxOtY619fC3V9lChoBmgJaA9DCAN64c6FESjAlIaUUpRoFUsyaBZHQMTrSiLVFx51fZQoaAZoCWgPQwg+WTFcHegkwJSGlFKUaBVLMmgWR0DE6zvmHP/rdX2UKGgGaAloD0MIHLRXHw9tI8CUhpRSlGgVSzJoFkdAxOssqDK5kXV9lChoBmgJaA9DCC+/02TGcyPAlIaUUpRoFUsyaBZHQMTrksqz7dl1fZQoaAZoCWgPQwicoiO5/PcgwJSGlFKUaBVLMmgWR0DE64P2Cdz5dX2UKGgGaAloD0MIYd7jTBP+IcCUhpRSlGgVSzJoFkdAxOt1uejEenV9lChoBmgJaA9DCBHHuriNliLAlIaUUpRoFUsyaBZHQMTrZmqYJE91fZQoaAZoCWgPQwhfYcH9gCcfwJSGlFKUaBVLMmgWR0DE69BOYYzjdX2UKGgGaAloD0MIlC9oIQHDFMCUhpRSlGgVSzJoFkdAxOvBwFTvRnV9lChoBmgJaA9DCH0HP3EAHRjAlIaUUpRoFUsyaBZHQMTrs5flZHN1fZQoaAZoCWgPQwhBZmfRO60gwJSGlFKUaBVLMmgWR0DE66ReHBUJdX2UKGgGaAloD0MIMH+FzJU5I8CUhpRSlGgVSzJoFkdAxOwmY1pCbHV9lChoBmgJaA9DCI178xsmmh3AlIaUUpRoFUsyaBZHQMTsF9HUc4p1fZQoaAZoCWgPQwj+nlinymcYwJSGlFKUaBVLMmgWR0DE7AnV3EAHdX2UKGgGaAloD0MIYp8AipFFGsCUhpRSlGgVSzJoFkdAxOv6rR0EHXV9lChoBmgJaA9DCLH9ZIwPgyLAlIaUUpRoFUsyaBZHQMTsgQm3OOd1fZQoaAZoCWgPQwj5FWu4yEUkwJSGlFKUaBVLMmgWR0DE7HJwsGxEdX2UKGgGaAloD0MIWTMyyF10HsCUhpRSlGgVSzJoFkdAxOxkXBxgiXV9lChoBmgJaA9DCCR7hJohZSXAlIaUUpRoFUsyaBZHQMTsVVGsmv51fZQoaAZoCWgPQwjWcJF7uvodwJSGlFKUaBVLMmgWR0DE7NlWIXTFdX2UKGgGaAloD0MIgbT/AdZ6EsCUhpRSlGgVSzJoFkdAxOzKt03fh3V9lChoBmgJaA9DCJJAg02d5x/AlIaUUpRoFUsyaBZHQMTsvJg9eQd1fZQoaAZoCWgPQwhfQC/cuVAcwJSGlFKUaBVLMmgWR0DE7K1zltCRdX2UKGgGaAloD0MIv2A3bFv0I8CUhpRSlGgVSzJoFkdAxO06nIhhY3V9lChoBmgJaA9DCJy/CYUICCbAlIaUUpRoFUsyaBZHQMTtLAflp491fZQoaAZoCWgPQwhCPujZrJIhwJSGlFKUaBVLMmgWR0DE7R4HxBmgdX2UKGgGaAloD0MIob36eOiLGsCUhpRSlGgVSzJoFkdAxO0O2bXpW3V9lChoBmgJaA9DCNBFQ8ajtBfAlIaUUpRoFUsyaBZHQMTtm08mrsB1fZQoaAZoCWgPQwj8/PfgtWshwJSGlFKUaBVLMmgWR0DE7Yy6Ymb9dX2UKGgGaAloD0MIHekMjLy8JsCUhpRSlGgVSzJoFkdAxO1+s5GSZHV9lChoBmgJaA9DCETAIVSpeQjAlIaUUpRoFUsyaBZHQMTtb6GHpKV1ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
  },
65
- "_n_updates": 200000,
66
  "n_steps": 5,
67
  "gamma": 0.99,
68
  "gae_lambda": 1.0,
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fee11cb5900>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fee11ca3400>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
19
  "weight_decay": 0
20
  }
21
  },
22
+ "num_timesteps": 2000000,
23
+ "_total_timesteps": 2000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
+ "start_time": 1685937491701212680,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
 
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAG1ntPiu8qb1ug8U+G1ntPiu8qb1ug8U+G1ntPiu8qb1ug8U+G1ntPiu8qb1ug8U+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/XiZPu9MNr4NKK2/+pnTv24FG72z9rk/Ad+1PxX0zz9mWcg/cZ2xv/B/or/NkGa/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAbWe0+K7ypvW6DxT6wnBY94KBAvAgrbzwbWe0+K7ypvW6DxT6wnBY94KBAvAgrbzwbWe0+K7ypvW6DxT6wnBY94KBAvAgrbzwbWe0+K7ypvW6DxT6wnBY94KBAvAgrbzyUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.46357045 -0.08287843 0.38576835]\n [ 0.46357045 -0.08287843 0.38576835]\n [ 0.46357045 -0.08287843 0.38576835]\n [ 0.46357045 -0.08287843 0.38576835]]",
38
+ "desired_goal": "[[ 0.2997512 -0.17802785 -1.3527848 ]\n [-1.6531365 -0.03784698 1.4528412 ]\n [ 1.420868 1.6246363 1.5652282 ]\n [-1.3876172 -1.2695293 -0.900647 ]]",
39
+ "observation": "[[ 0.46357045 -0.08287843 0.38576835 0.03677052 -0.01175711 0.01459766]\n [ 0.46357045 -0.08287843 0.38576835 0.03677052 -0.01175711 0.01459766]\n [ 0.46357045 -0.08287843 0.38576835 0.03677052 -0.01175711 0.01459766]\n [ 0.46357045 -0.08287843 0.38576835 0.03677052 -0.01175711 0.01459766]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
 
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyIR3PeQ9lT00fcc9DC22vaiVoz2ssho9HGVzvYwgiT3CqY49RosWPiOflb2Mx649lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.06042936 0.07287195 0.09740677]\n [-0.08895311 0.07987529 0.03776805]\n [-0.0594226 0.06695661 0.06965972]\n [ 0.14701566 -0.07305744 0.08534154]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
 
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVd/5RQnKGcCUhpRSlIwBbJRLMowBdJRHQLVxkagVXV91fZQoaAZoCWgPQwhdaoR+pgY0wJSGlFKUaBVLMmgWR0C1cXWFFlTWdX2UKGgGaAloD0MITfkQVI2+GcCUhpRSlGgVSzJoFkdAtXFZMK1G9nV9lChoBmgJaA9DCGn/A6xVqx/AlIaUUpRoFUsyaBZHQLVxPQnQY1p1fZQoaAZoCWgPQwhcOXtntKUTwJSGlFKUaBVLMmgWR0C1ck/ICEHudX2UKGgGaAloD0MI7IhDNpC+FMCUhpRSlGgVSzJoFkdAtXIzXe3x4XV9lChoBmgJaA9DCP+SVKaY2zDAlIaUUpRoFUsyaBZHQLVyF0nw5Np1fZQoaAZoCWgPQwi1NLdCWO0gwJSGlFKUaBVLMmgWR0C1cfsTviLmdX2UKGgGaAloD0MIguFcwwwdFcCUhpRSlGgVSzJoFkdAtXMfaJyhjHV9lChoBmgJaA9DCM7hWu1hOzDAlIaUUpRoFUsyaBZHQLVzA0p3HJd1fZQoaAZoCWgPQwhBuAIK9bwywJSGlFKUaBVLMmgWR0C1cuc5jpcHdX2UKGgGaAloD0MIKlWi7C21HsCUhpRSlGgVSzJoFkdAtXLL6nBLwnV9lChoBmgJaA9DCJPGaB1VvRnAlIaUUpRoFUsyaBZHQLVzrhePaL51fZQoaAZoCWgPQwjEfHkB9uEbwJSGlFKUaBVLMmgWR0C1c5HZ00WNdX2UKGgGaAloD0MILjvEP2z5MMCUhpRSlGgVSzJoFkdAtXN1WaMJhXV9lChoBmgJaA9DCF2/YDds6xjAlIaUUpRoFUsyaBZHQLVzWQOFxn51fZQoaAZoCWgPQwjsTneeePYuwJSGlFKUaBVLMmgWR0C1dB69CeEqdX2UKGgGaAloD0MIptb7jXYcI8CUhpRSlGgVSzJoFkdAtXQCEqUeMnV9lChoBmgJaA9DCGR1q+ekazDAlIaUUpRoFUsyaBZHQLVz5YJVsDZ1fZQoaAZoCWgPQwheFD3wMZAkwJSGlFKUaBVLMmgWR0C1c8l2eQMhdX2UKGgGaAloD0MI0uKMYU6AIsCUhpRSlGgVSzJoFkdAtXSRQm/nGXV9lChoBmgJaA9DCHl0IywqAhvAlIaUUpRoFUsyaBZHQLV0dQemvW91fZQoaAZoCWgPQwjG4cyv5swywJSGlFKUaBVLMmgWR0C1dFkFW4mUdX2UKGgGaAloD0MI7fDXZI2KGMCUhpRSlGgVSzJoFkdAtXQ89B8hLXV9lChoBmgJaA9DCEoofSHk3BPAlIaUUpRoFUsyaBZHQLV1DGEPDpF1fZQoaAZoCWgPQwj/y7VoAWIgwJSGlFKUaBVLMmgWR0C1dPAuqWC3dX2UKGgGaAloD0MIpBe1+1UgH8CUhpRSlGgVSzJoFkdAtXTTsIE8rHV9lChoBmgJaA9DCGFVvfxOwyTAlIaUUpRoFUsyaBZHQLV0t4gieNF1fZQoaAZoCWgPQwhegehJmfQfwJSGlFKUaBVLMmgWR0C1dYK7I1cddX2UKGgGaAloD0MIx0YgXtevLcCUhpRSlGgVSzJoFkdAtXVmNJe3QXV9lChoBmgJaA9DCCpY42w6DjPAlIaUUpRoFUsyaBZHQLV1ScOskpt1fZQoaAZoCWgPQwj7WMFvQ3wuwJSGlFKUaBVLMmgWR0C1dS1zdUKidX2UKGgGaAloD0MILuI7MevVE8CUhpRSlGgVSzJoFkdAtXX0d0aIe3V9lChoBmgJaA9DCK5i8ZvCGiPAlIaUUpRoFUsyaBZHQLV11+o99tx1fZQoaAZoCWgPQwjZtb3dkmwhwJSGlFKUaBVLMmgWR0C1dbt2C/XYdX2UKGgGaAloD0MIyyxCsRWkNMCUhpRSlGgVSzJoFkdAtXWfV5KODXV9lChoBmgJaA9DCM4AF2TLXjbAlIaUUpRoFUsyaBZHQLV2bWHUMG51fZQoaAZoCWgPQwg4Ef3a+pkhwJSGlFKUaBVLMmgWR0C1dlDM7lq8dX2UKGgGaAloD0MIqgoNxLKhK8CUhpRSlGgVSzJoFkdAtXY0f0VafXV9lChoBmgJaA9DCJ1GWipvRxzAlIaUUpRoFUsyaBZHQLV2GIRywOh1fZQoaAZoCWgPQwg34PPDCOEowJSGlFKUaBVLMmgWR0C1dteXNTtLdX2UKGgGaAloD0MIhEpcx7iCEsCUhpRSlGgVSzJoFkdAtXa7OY6XB3V9lChoBmgJaA9DCGuCqPsA1CDAlIaUUpRoFUsyaBZHQLV2npxWDHx1fZQoaAZoCWgPQwj6sx8pIlMewJSGlFKUaBVLMmgWR0C1doIt6HCXdX2UKGgGaAloD0MI4dIx5xmLF8CUhpRSlGgVSzJoFkdAtXdE6r/823V9lChoBmgJaA9DCDI6IAn7cjjAlIaUUpRoFUsyaBZHQLV3KGA08/51fZQoaAZoCWgPQwhnRj8aTvkbwJSGlFKUaBVLMmgWR0C1dwvEsJ6ZdX2UKGgGaAloD0MIGvonuFgJIsCUhpRSlGgVSzJoFkdAtXbvcBU70XV9lChoBmgJaA9DCOer5GN3YSnAlIaUUpRoFUsyaBZHQLV3qgCwKSh1fZQoaAZoCWgPQwiuEFZjCSsuwJSGlFKUaBVLMmgWR0C1d41RHf/FdX2UKGgGaAloD0MIj6m7sgtGGsCUhpRSlGgVSzJoFkdAtXdwurZJ1HV9lChoBmgJaA9DCPyNdtzw2xPAlIaUUpRoFUsyaBZHQLV3VE1l5GB1fZQoaAZoCWgPQwhf7pOjAEEvwJSGlFKUaBVLMmgWR0C1eBEHY6GQdX2UKGgGaAloD0MID5vIzAX2I8CUhpRSlGgVSzJoFkdAtXf0Yzi0fHV9lChoBmgJaA9DCG07bY0I5hzAlIaUUpRoFUsyaBZHQLV318wYced1fZQoaAZoCWgPQwgy6ITQQTcTwJSGlFKUaBVLMmgWR0C1d7trXUYsdX2UKGgGaAloD0MIELBW7ZpwF8CUhpRSlGgVSzJoFkdAtXiHCJoCdXV9lChoBmgJaA9DCD8BFCNLBhbAlIaUUpRoFUsyaBZHQLV4alpoK2N1fZQoaAZoCWgPQwjII7iRsmUhwJSGlFKUaBVLMmgWR0C1eE3Z5AyEdX2UKGgGaAloD0MIaAQb178rGsCUhpRSlGgVSzJoFkdAtXgxZid8RnV9lChoBmgJaA9DCE7TZwdcjyzAlIaUUpRoFUsyaBZHQLV49QBPsRh1fZQoaAZoCWgPQwiLi6NyE6UdwJSGlFKUaBVLMmgWR0C1eNhVU+9rdX2UKGgGaAloD0MIisxc4PLwJMCUhpRSlGgVSzJoFkdAtXi7va11GXV9lChoBmgJaA9DCH5Rgv5CTxzAlIaUUpRoFUsyaBZHQLV4n0nw5Np1fZQoaAZoCWgPQwiH3uLhPRcXwJSGlFKUaBVLMmgWR0C1eXK0+kgwdX2UKGgGaAloD0MIUtfa+1QVFcCUhpRSlGgVSzJoFkdAtXlWQXAM2HV9lChoBmgJaA9DCDV8C+vGyx/AlIaUUpRoFUsyaBZHQLV5OalUIcB1fZQoaAZoCWgPQwgaTwRxHq4jwJSGlFKUaBVLMmgWR0C1eR1Iy0rtdX2UKGgGaAloD0MIl6yKcJNZJsCUhpRSlGgVSzJoFkdAtXnrZCfHxXV9lChoBmgJaA9DCAcnol9b7xLAlIaUUpRoFUsyaBZHQLV5ztm+TNd1fZQoaAZoCWgPQwilhGBVvYwqwJSGlFKUaBVLMmgWR0C1ebKfra/RdX2UKGgGaAloD0MIqkTZW8qRI8CUhpRSlGgVSzJoFkdAtXmWgBcRlHV9lChoBmgJaA9DCBwpWyTtlinAlIaUUpRoFUsyaBZHQLV6YcGkep51fZQoaAZoCWgPQwi2L6AX7rwRwJSGlFKUaBVLMmgWR0C1ekVMuez2dX2UKGgGaAloD0MIbeUl/5PvIMCUhpRSlGgVSzJoFkdAtXoosf7rLXV9lChoBmgJaA9DCPG8VGzMIyHAlIaUUpRoFUsyaBZHQLV6DER8MNN1fZQoaAZoCWgPQwh7Mv/om9QPwJSGlFKUaBVLMmgWR0C1etIUJv5ydX2UKGgGaAloD0MI8+SaApktIMCUhpRSlGgVSzJoFkdAtXq1YU34sXV9lChoBmgJaA9DCKEPlrGhKxnAlIaUUpRoFUsyaBZHQLV6mMbWEsd1fZQoaAZoCWgPQwh1IOup1Q8lwJSGlFKUaBVLMmgWR0C1enxwQ176dX2UKGgGaAloD0MIVu9wOzRIMMCUhpRSlGgVSzJoFkdAtXtK/47A+XV9lChoBmgJaA9DCOihtg2jRDTAlIaUUpRoFUsyaBZHQLV7LnQID5l1fZQoaAZoCWgPQwhTQrCqXr4lwJSGlFKUaBVLMmgWR0C1exHeFcptdX2UKGgGaAloD0MIGCMShZZlFcCUhpRSlGgVSzJoFkdAtXr1ic5Ke3V9lChoBmgJaA9DCOkmMQisBCLAlIaUUpRoFUsyaBZHQLV7tGWUr091fZQoaAZoCWgPQwjt0obD0nAdwJSGlFKUaBVLMmgWR0C1e5e2y9mIdX2UKGgGaAloD0MIkx0bgXhlIsCUhpRSlGgVSzJoFkdAtXt7GuLaVXV9lChoBmgJaA9DCHuFBfcDRiXAlIaUUpRoFUsyaBZHQLV7XtOmBOJ1fZQoaAZoCWgPQwgjS+ZY3hUvwJSGlFKUaBVLMmgWR0C1fCRjjJdTdX2UKGgGaAloD0MI1J6Sc2KnLcCUhpRSlGgVSzJoFkdAtXwH2ZiNKnV9lChoBmgJaA9DCLL0oQvqGxrAlIaUUpRoFUsyaBZHQLV760Re1KJ1fZQoaAZoCWgPQwgEOL2L9wMuwJSGlFKUaBVLMmgWR0C1e87OzIFNdX2UKGgGaAloD0MI8tO4N7+pKMCUhpRSlGgVSzJoFkdAtXyTjABT43V9lChoBmgJaA9DCAIoRpbMERfAlIaUUpRoFUsyaBZHQLV8dxFAmiR1fZQoaAZoCWgPQwhnfcoxWVwdwJSGlFKUaBVLMmgWR0C1fFp8F6iTdX2UKGgGaAloD0MIavtXVpr8JMCUhpRSlGgVSzJoFkdAtXw+N+9alnV9lChoBmgJaA9DCODaiZKQbDDAlIaUUpRoFUsyaBZHQLV8+TwlSjx1fZQoaAZoCWgPQwh9s82N6akTwJSGlFKUaBVLMmgWR0C1fNyOearndX2UKGgGaAloD0MImFDB4QWxHMCUhpRSlGgVSzJoFkdAtXy/8R+SbHV9lChoBmgJaA9DCANckC3LxyDAlIaUUpRoFUsyaBZHQLV8o9/jKgZ1ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
  },
65
+ "_n_updates": 100000,
66
  "n_steps": 5,
67
  "gamma": 0.99,
68
  "gae_lambda": 1.0,
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:60e069d69d3bb773ffd4108ce03f162256237596617dccf28591e8ea7ff44ce7
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9bed9fe025f325ee1f2c3deb9a3541bbeb26977819bc435ea1327aff9bedd8a
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3531c1dd9259c6c115813406488d6c23843d45e0ff8f6a9a1119962b962f5ec3
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9a7cddc78cda780a2ca3ea4299d9960225319b5e001330a94f10928d4f7b9be
3
  size 46014
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0d36be2b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0d36be5cc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 4000000, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685818302686248733, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAARsfdPnkN5j2/5ac+RsfdPnkN5j2/5ac+RsfdPnkN5j2/5ac+RsfdPnkN5j2/5ac+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQeWQPwyJ0T8GE4Y/oGt0P3W00L/nTr6//3uTP+tbJ7++sro/bbAbPx7ATr6BKbA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABGx90+eQ3mPb/lpz5Xb1U9r6gVPCToAz1Gx90+eQ3mPb/lpz5Xb1U9r6gVPCToAz1Gx90+eQ3mPb/lpz5Xb1U9r6gVPCToAz1Gx90+eQ3mPb/lpz5Xb1U9r6gVPCToAz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43316096 0.11233038 0.3279247 ]\n [0.43316096 0.11233038 0.3279247 ]\n [0.43316096 0.11233038 0.3279247 ]\n [0.43316096 0.11233038 0.3279247 ]]", "desired_goal": "[[ 1.1319963 1.6369948 1.0474555 ]\n [ 0.9547672 -1.6305071 -1.4867829 ]\n [ 1.1522216 -0.6537463 1.4585798 ]\n [ 0.6081608 -0.20190474 1.3762666 ]]", "observation": "[[0.43316096 0.11233038 0.3279247 0.05210814 0.00913446 0.03220381]\n [0.43316096 0.11233038 0.3279247 0.05210814 0.00913446 0.03220381]\n [0.43316096 0.11233038 0.3279247 0.05210814 0.00913446 0.03220381]\n [0.43316096 0.11233038 0.3279247 0.05210814 0.00913446 0.03220381]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7pI3vdwUvb0G3zk+hICYPHpmC74S24k+hvPivaHuA74lMXY9yGRPvavfKj0dSPk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.04481786 -0.09232494 0.18151483]\n [ 0.01861597 -0.1361331 0.2692495 ]\n [-0.11081605 -0.12883998 0.06010546]\n [-0.05063322 0.04171721 0.12171958]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHcu76gETE8CUhpRSlIwBbJRLMowBdJRHQMTnfPkili11fZQoaAZoCWgPQwgPJsXHJ8QdwJSGlFKUaBVLMmgWR0DE524yAQQMdX2UKGgGaAloD0MIFEIHXcIhFMCUhpRSlGgVSzJoFkdAxOdf9Wp6yHV9lChoBmgJaA9DCJrS+lsCCCLAlIaUUpRoFUsyaBZHQMTnUNBfKIV1fZQoaAZoCWgPQwiGN2vwvuoawJSGlFKUaBVLMmgWR0DE57cTBZZCdX2UKGgGaAloD0MIiIIZU7DeIsCUhpRSlGgVSzJoFkdAxOeoQ8wHq3V9lChoBmgJaA9DCFMGDmjpShrAlIaUUpRoFUsyaBZHQMTnmgrH2h91fZQoaAZoCWgPQwgFM6ZgjQMWwJSGlFKUaBVLMmgWR0DE54rPIGQkdX2UKGgGaAloD0MIK4VALnF0H8CUhpRSlGgVSzJoFkdAxOfwHBUJfXV9lChoBmgJaA9DCKdc4V0uIh7AlIaUUpRoFUsyaBZHQMTn4U/wAlx1fZQoaAZoCWgPQwhnuWx0zk8hwJSGlFKUaBVLMmgWR0DE59MkleF+dX2UKGgGaAloD0MIbNCX3v68GMCUhpRSlGgVSzJoFkdAxOfD8MuvlnV9lChoBmgJaA9DCHui68IPXhTAlIaUUpRoFUsyaBZHQMToLT72tdR1fZQoaAZoCWgPQwjIl1DB4eUfwJSGlFKUaBVLMmgWR0DE6B6RB/qgdX2UKGgGaAloD0MIvB+3Xz6pHcCUhpRSlGgVSzJoFkdAxOgQcf/3nXV9lChoBmgJaA9DCA2Oklfn2BfAlIaUUpRoFUsyaBZHQMToAVBdD6Z1fZQoaAZoCWgPQwi/Yg0XuWcmwJSGlFKUaBVLMmgWR0DE6GcYQ8OkdX2UKGgGaAloD0MIyAp+G2IMIMCUhpRSlGgVSzJoFkdAxOhYZML4OHV9lChoBmgJaA9DCJrpXif1xSLAlIaUUpRoFUsyaBZHQMToSjRD1Gt1fZQoaAZoCWgPQwht/8pKk0InwJSGlFKUaBVLMmgWR0DE6Dr212JSdX2UKGgGaAloD0MIERjrG5i8IcCUhpRSlGgVSzJoFkdAxOin1SwW33V9lChoBmgJaA9DCPWAeciUjx/AlIaUUpRoFUsyaBZHQMTomROclPd1fZQoaAZoCWgPQwjvOEVHcqkbwJSGlFKUaBVLMmgWR0DE6IrxgAp8dX2UKGgGaAloD0MITihEwCE0FMCUhpRSlGgVSzJoFkdAxOh7rJKaonV9lChoBmgJaA9DCG/W4H1V3iXAlIaUUpRoFUsyaBZHQMTo5a7ulXR1fZQoaAZoCWgPQwjIfECgM1kcwJSGlFKUaBVLMmgWR0DE6NbbnHNpdX2UKGgGaAloD0MI5Uf8ijW0I8CUhpRSlGgVSzJoFkdAxOjIqjJuEXV9lChoBmgJaA9DCAEVjiCV4h/AlIaUUpRoFUsyaBZHQMTouW3KB/Z1fZQoaAZoCWgPQwjFyJI5lvcRwJSGlFKUaBVLMmgWR0DE6R50W/JvdX2UKGgGaAloD0MICK7yBMIeGMCUhpRSlGgVSzJoFkdAxOkPpnHvMXV9lChoBmgJaA9DCFr1udqKBSTAlIaUUpRoFUsyaBZHQMTpAXHq/ud1fZQoaAZoCWgPQwiYwK27eZohwJSGlFKUaBVLMmgWR0DE6PI3xWkrdX2UKGgGaAloD0MIvvp46LurIMCUhpRSlGgVSzJoFkdAxOlZvH93r3V9lChoBmgJaA9DCPuVzodniSfAlIaUUpRoFUsyaBZHQMTpSuh0yQB1fZQoaAZoCWgPQwgNN+Dzw5AiwJSGlFKUaBVLMmgWR0DE6TzE74i5dX2UKGgGaAloD0MIwwyNJ4L4HcCUhpRSlGgVSzJoFkdAxOktd1uBMHV9lChoBmgJaA9DCBDqIoWygBXAlIaUUpRoFUsyaBZHQMTpkW2XsxB1fZQoaAZoCWgPQwjK4v4j07khwJSGlFKUaBVLMmgWR0DE6YKjHn2adX2UKGgGaAloD0MIsOjWa3poIMCUhpRSlGgVSzJoFkdAxOl0bNr0rnV9lChoBmgJaA9DCN0kBoGVwxXAlIaUUpRoFUsyaBZHQMTpZR51Ng11fZQoaAZoCWgPQwiMEYlCywodwJSGlFKUaBVLMmgWR0DE6cm2kSEldX2UKGgGaAloD0MIMQisHFpkI8CUhpRSlGgVSzJoFkdAxOm65+Ytx3V9lChoBmgJaA9DCGsRUUzeCCTAlIaUUpRoFUsyaBZHQMTprLI5o5B1fZQoaAZoCWgPQwjThVj9EYYnwJSGlFKUaBVLMmgWR0DE6Z1gnc+JdX2UKGgGaAloD0MIF+/H7ZevE8CUhpRSlGgVSzJoFkdAxOn+rjo6jnV9lChoBmgJaA9DCE59IHnngBjAlIaUUpRoFUsyaBZHQMTp79hy8z11fZQoaAZoCWgPQwipnzcVqcAdwJSGlFKUaBVLMmgWR0DE6eGez2OAdX2UKGgGaAloD0MIfzMxXYg1F8CUhpRSlGgVSzJoFkdAxOnSaJAMUnV9lChoBmgJaA9DCCO70jJSryTAlIaUUpRoFUsyaBZHQMTqOqzZ6D51fZQoaAZoCWgPQwiw5CoWv5kXwJSGlFKUaBVLMmgWR0DE6ivpfQa8dX2UKGgGaAloD0MIg7709udyH8CUhpRSlGgVSzJoFkdAxOodra/RFHV9lChoBmgJaA9DCPnWh/VGXRfAlIaUUpRoFUsyaBZHQMTqDmhdt2t1fZQoaAZoCWgPQwh9XBsqxikewJSGlFKUaBVLMmgWR0DE6nE6DGtIdX2UKGgGaAloD0MI9bhvtU6cIcCUhpRSlGgVSzJoFkdAxOpiYWtU43V9lChoBmgJaA9DCF6+9WG9URnAlIaUUpRoFUsyaBZHQMTqVEo4MnZ1fZQoaAZoCWgPQwiMnlvoSmwhwJSGlFKUaBVLMmgWR0DE6kT9OymidX2UKGgGaAloD0MIPV+zXDZyJcCUhpRSlGgVSzJoFkdAxOqqDB/I83V9lChoBmgJaA9DCLcqieyDfCfAlIaUUpRoFUsyaBZHQMTqmziCJ411fZQoaAZoCWgPQwj3ViQmqLEawJSGlFKUaBVLMmgWR0DE6o0AaNuMdX2UKGgGaAloD0MIh4cwfhp3IMCUhpRSlGgVSzJoFkdAxOp9wLE1mHV9lChoBmgJaA9DCI5bzM8NNSPAlIaUUpRoFUsyaBZHQMTq5K4QSSN1fZQoaAZoCWgPQwhOKhprf5ccwJSGlFKUaBVLMmgWR0DE6tXyup0fdX2UKGgGaAloD0MIU1kUdlFEHsCUhpRSlGgVSzJoFkdAxOrHvd/KAHV9lChoBmgJaA9DCDv7yoP0TCPAlIaUUpRoFUsyaBZHQMTquGlQ/HJ1fZQoaAZoCWgPQwgyAFRx4zYTwJSGlFKUaBVLMmgWR0DE6x7rAxi5dX2UKGgGaAloD0MITb7Z5sbUEcCUhpRSlGgVSzJoFkdAxOsQKP4mC3V9lChoBmgJaA9DCGnlXmBWqCbAlIaUUpRoFUsyaBZHQMTrAeuV5bB1fZQoaAZoCWgPQwi5jJsaaOYhwJSGlFKUaBVLMmgWR0DE6vKZjQRgdX2UKGgGaAloD0MIREyJJHohIMCUhpRSlGgVSzJoFkdAxOtY619fC3V9lChoBmgJaA9DCAN64c6FESjAlIaUUpRoFUsyaBZHQMTrSiLVFx51fZQoaAZoCWgPQwg+WTFcHegkwJSGlFKUaBVLMmgWR0DE6zvmHP/rdX2UKGgGaAloD0MIHLRXHw9tI8CUhpRSlGgVSzJoFkdAxOssqDK5kXV9lChoBmgJaA9DCC+/02TGcyPAlIaUUpRoFUsyaBZHQMTrksqz7dl1fZQoaAZoCWgPQwicoiO5/PcgwJSGlFKUaBVLMmgWR0DE64P2Cdz5dX2UKGgGaAloD0MIYd7jTBP+IcCUhpRSlGgVSzJoFkdAxOt1uejEenV9lChoBmgJaA9DCBHHuriNliLAlIaUUpRoFUsyaBZHQMTrZmqYJE91fZQoaAZoCWgPQwhfYcH9gCcfwJSGlFKUaBVLMmgWR0DE69BOYYzjdX2UKGgGaAloD0MIlC9oIQHDFMCUhpRSlGgVSzJoFkdAxOvBwFTvRnV9lChoBmgJaA9DCH0HP3EAHRjAlIaUUpRoFUsyaBZHQMTrs5flZHN1fZQoaAZoCWgPQwhBZmfRO60gwJSGlFKUaBVLMmgWR0DE66ReHBUJdX2UKGgGaAloD0MIMH+FzJU5I8CUhpRSlGgVSzJoFkdAxOwmY1pCbHV9lChoBmgJaA9DCI178xsmmh3AlIaUUpRoFUsyaBZHQMTsF9HUc4p1fZQoaAZoCWgPQwj+nlinymcYwJSGlFKUaBVLMmgWR0DE7AnV3EAHdX2UKGgGaAloD0MIYp8AipFFGsCUhpRSlGgVSzJoFkdAxOv6rR0EHXV9lChoBmgJaA9DCLH9ZIwPgyLAlIaUUpRoFUsyaBZHQMTsgQm3OOd1fZQoaAZoCWgPQwj5FWu4yEUkwJSGlFKUaBVLMmgWR0DE7HJwsGxEdX2UKGgGaAloD0MIWTMyyF10HsCUhpRSlGgVSzJoFkdAxOxkXBxgiXV9lChoBmgJaA9DCCR7hJohZSXAlIaUUpRoFUsyaBZHQMTsVVGsmv51fZQoaAZoCWgPQwjWcJF7uvodwJSGlFKUaBVLMmgWR0DE7NlWIXTFdX2UKGgGaAloD0MIgbT/AdZ6EsCUhpRSlGgVSzJoFkdAxOzKt03fh3V9lChoBmgJaA9DCJJAg02d5x/AlIaUUpRoFUsyaBZHQMTsvJg9eQd1fZQoaAZoCWgPQwhfQC/cuVAcwJSGlFKUaBVLMmgWR0DE7K1zltCRdX2UKGgGaAloD0MIv2A3bFv0I8CUhpRSlGgVSzJoFkdAxO06nIhhY3V9lChoBmgJaA9DCJy/CYUICCbAlIaUUpRoFUsyaBZHQMTtLAflp491fZQoaAZoCWgPQwhCPujZrJIhwJSGlFKUaBVLMmgWR0DE7R4HxBmgdX2UKGgGaAloD0MIob36eOiLGsCUhpRSlGgVSzJoFkdAxO0O2bXpW3V9lChoBmgJaA9DCNBFQ8ajtBfAlIaUUpRoFUsyaBZHQMTtm08mrsB1fZQoaAZoCWgPQwj8/PfgtWshwJSGlFKUaBVLMmgWR0DE7Yy6Ymb9dX2UKGgGaAloD0MIHekMjLy8JsCUhpRSlGgVSzJoFkdAxO1+s5GSZHV9lChoBmgJaA9DCETAIVSpeQjAlIaUUpRoFUsyaBZHQMTtb6GHpKV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 200000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fee11cb5900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fee11ca3400>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685937491701212680, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAG1ntPiu8qb1ug8U+G1ntPiu8qb1ug8U+G1ntPiu8qb1ug8U+G1ntPiu8qb1ug8U+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/XiZPu9MNr4NKK2/+pnTv24FG72z9rk/Ad+1PxX0zz9mWcg/cZ2xv/B/or/NkGa/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAbWe0+K7ypvW6DxT6wnBY94KBAvAgrbzwbWe0+K7ypvW6DxT6wnBY94KBAvAgrbzwbWe0+K7ypvW6DxT6wnBY94KBAvAgrbzwbWe0+K7ypvW6DxT6wnBY94KBAvAgrbzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.46357045 -0.08287843 0.38576835]\n [ 0.46357045 -0.08287843 0.38576835]\n [ 0.46357045 -0.08287843 0.38576835]\n [ 0.46357045 -0.08287843 0.38576835]]", "desired_goal": "[[ 0.2997512 -0.17802785 -1.3527848 ]\n [-1.6531365 -0.03784698 1.4528412 ]\n [ 1.420868 1.6246363 1.5652282 ]\n [-1.3876172 -1.2695293 -0.900647 ]]", "observation": "[[ 0.46357045 -0.08287843 0.38576835 0.03677052 -0.01175711 0.01459766]\n [ 0.46357045 -0.08287843 0.38576835 0.03677052 -0.01175711 0.01459766]\n [ 0.46357045 -0.08287843 0.38576835 0.03677052 -0.01175711 0.01459766]\n [ 0.46357045 -0.08287843 0.38576835 0.03677052 -0.01175711 0.01459766]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyIR3PeQ9lT00fcc9DC22vaiVoz2ssho9HGVzvYwgiT3CqY49RosWPiOflb2Mx649lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06042936 0.07287195 0.09740677]\n [-0.08895311 0.07987529 0.03776805]\n [-0.0594226 0.06695661 0.06965972]\n [ 0.14701566 -0.07305744 0.08534154]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVd/5RQnKGcCUhpRSlIwBbJRLMowBdJRHQLVxkagVXV91fZQoaAZoCWgPQwhdaoR+pgY0wJSGlFKUaBVLMmgWR0C1cXWFFlTWdX2UKGgGaAloD0MITfkQVI2+GcCUhpRSlGgVSzJoFkdAtXFZMK1G9nV9lChoBmgJaA9DCGn/A6xVqx/AlIaUUpRoFUsyaBZHQLVxPQnQY1p1fZQoaAZoCWgPQwhcOXtntKUTwJSGlFKUaBVLMmgWR0C1ck/ICEHudX2UKGgGaAloD0MI7IhDNpC+FMCUhpRSlGgVSzJoFkdAtXIzXe3x4XV9lChoBmgJaA9DCP+SVKaY2zDAlIaUUpRoFUsyaBZHQLVyF0nw5Np1fZQoaAZoCWgPQwi1NLdCWO0gwJSGlFKUaBVLMmgWR0C1cfsTviLmdX2UKGgGaAloD0MIguFcwwwdFcCUhpRSlGgVSzJoFkdAtXMfaJyhjHV9lChoBmgJaA9DCM7hWu1hOzDAlIaUUpRoFUsyaBZHQLVzA0p3HJd1fZQoaAZoCWgPQwhBuAIK9bwywJSGlFKUaBVLMmgWR0C1cuc5jpcHdX2UKGgGaAloD0MIKlWi7C21HsCUhpRSlGgVSzJoFkdAtXLL6nBLwnV9lChoBmgJaA9DCJPGaB1VvRnAlIaUUpRoFUsyaBZHQLVzrhePaL51fZQoaAZoCWgPQwjEfHkB9uEbwJSGlFKUaBVLMmgWR0C1c5HZ00WNdX2UKGgGaAloD0MILjvEP2z5MMCUhpRSlGgVSzJoFkdAtXN1WaMJhXV9lChoBmgJaA9DCF2/YDds6xjAlIaUUpRoFUsyaBZHQLVzWQOFxn51fZQoaAZoCWgPQwjsTneeePYuwJSGlFKUaBVLMmgWR0C1dB69CeEqdX2UKGgGaAloD0MIptb7jXYcI8CUhpRSlGgVSzJoFkdAtXQCEqUeMnV9lChoBmgJaA9DCGR1q+ekazDAlIaUUpRoFUsyaBZHQLVz5YJVsDZ1fZQoaAZoCWgPQwheFD3wMZAkwJSGlFKUaBVLMmgWR0C1c8l2eQMhdX2UKGgGaAloD0MI0uKMYU6AIsCUhpRSlGgVSzJoFkdAtXSRQm/nGXV9lChoBmgJaA9DCHl0IywqAhvAlIaUUpRoFUsyaBZHQLV0dQemvW91fZQoaAZoCWgPQwjG4cyv5swywJSGlFKUaBVLMmgWR0C1dFkFW4mUdX2UKGgGaAloD0MI7fDXZI2KGMCUhpRSlGgVSzJoFkdAtXQ89B8hLXV9lChoBmgJaA9DCEoofSHk3BPAlIaUUpRoFUsyaBZHQLV1DGEPDpF1fZQoaAZoCWgPQwj/y7VoAWIgwJSGlFKUaBVLMmgWR0C1dPAuqWC3dX2UKGgGaAloD0MIpBe1+1UgH8CUhpRSlGgVSzJoFkdAtXTTsIE8rHV9lChoBmgJaA9DCGFVvfxOwyTAlIaUUpRoFUsyaBZHQLV0t4gieNF1fZQoaAZoCWgPQwhegehJmfQfwJSGlFKUaBVLMmgWR0C1dYK7I1cddX2UKGgGaAloD0MIx0YgXtevLcCUhpRSlGgVSzJoFkdAtXVmNJe3QXV9lChoBmgJaA9DCCpY42w6DjPAlIaUUpRoFUsyaBZHQLV1ScOskpt1fZQoaAZoCWgPQwj7WMFvQ3wuwJSGlFKUaBVLMmgWR0C1dS1zdUKidX2UKGgGaAloD0MILuI7MevVE8CUhpRSlGgVSzJoFkdAtXX0d0aIe3V9lChoBmgJaA9DCK5i8ZvCGiPAlIaUUpRoFUsyaBZHQLV11+o99tx1fZQoaAZoCWgPQwjZtb3dkmwhwJSGlFKUaBVLMmgWR0C1dbt2C/XYdX2UKGgGaAloD0MIyyxCsRWkNMCUhpRSlGgVSzJoFkdAtXWfV5KODXV9lChoBmgJaA9DCM4AF2TLXjbAlIaUUpRoFUsyaBZHQLV2bWHUMG51fZQoaAZoCWgPQwg4Ef3a+pkhwJSGlFKUaBVLMmgWR0C1dlDM7lq8dX2UKGgGaAloD0MIqgoNxLKhK8CUhpRSlGgVSzJoFkdAtXY0f0VafXV9lChoBmgJaA9DCJ1GWipvRxzAlIaUUpRoFUsyaBZHQLV2GIRywOh1fZQoaAZoCWgPQwg34PPDCOEowJSGlFKUaBVLMmgWR0C1dteXNTtLdX2UKGgGaAloD0MIhEpcx7iCEsCUhpRSlGgVSzJoFkdAtXa7OY6XB3V9lChoBmgJaA9DCGuCqPsA1CDAlIaUUpRoFUsyaBZHQLV2npxWDHx1fZQoaAZoCWgPQwj6sx8pIlMewJSGlFKUaBVLMmgWR0C1doIt6HCXdX2UKGgGaAloD0MI4dIx5xmLF8CUhpRSlGgVSzJoFkdAtXdE6r/823V9lChoBmgJaA9DCDI6IAn7cjjAlIaUUpRoFUsyaBZHQLV3KGA08/51fZQoaAZoCWgPQwhnRj8aTvkbwJSGlFKUaBVLMmgWR0C1dwvEsJ6ZdX2UKGgGaAloD0MIGvonuFgJIsCUhpRSlGgVSzJoFkdAtXbvcBU70XV9lChoBmgJaA9DCOer5GN3YSnAlIaUUpRoFUsyaBZHQLV3qgCwKSh1fZQoaAZoCWgPQwiuEFZjCSsuwJSGlFKUaBVLMmgWR0C1d41RHf/FdX2UKGgGaAloD0MIj6m7sgtGGsCUhpRSlGgVSzJoFkdAtXdwurZJ1HV9lChoBmgJaA9DCPyNdtzw2xPAlIaUUpRoFUsyaBZHQLV3VE1l5GB1fZQoaAZoCWgPQwhf7pOjAEEvwJSGlFKUaBVLMmgWR0C1eBEHY6GQdX2UKGgGaAloD0MID5vIzAX2I8CUhpRSlGgVSzJoFkdAtXf0Yzi0fHV9lChoBmgJaA9DCG07bY0I5hzAlIaUUpRoFUsyaBZHQLV318wYced1fZQoaAZoCWgPQwgy6ITQQTcTwJSGlFKUaBVLMmgWR0C1d7trXUYsdX2UKGgGaAloD0MIELBW7ZpwF8CUhpRSlGgVSzJoFkdAtXiHCJoCdXV9lChoBmgJaA9DCD8BFCNLBhbAlIaUUpRoFUsyaBZHQLV4alpoK2N1fZQoaAZoCWgPQwjII7iRsmUhwJSGlFKUaBVLMmgWR0C1eE3Z5AyEdX2UKGgGaAloD0MIaAQb178rGsCUhpRSlGgVSzJoFkdAtXgxZid8RnV9lChoBmgJaA9DCE7TZwdcjyzAlIaUUpRoFUsyaBZHQLV49QBPsRh1fZQoaAZoCWgPQwiLi6NyE6UdwJSGlFKUaBVLMmgWR0C1eNhVU+9rdX2UKGgGaAloD0MIisxc4PLwJMCUhpRSlGgVSzJoFkdAtXi7va11GXV9lChoBmgJaA9DCH5Rgv5CTxzAlIaUUpRoFUsyaBZHQLV4n0nw5Np1fZQoaAZoCWgPQwiH3uLhPRcXwJSGlFKUaBVLMmgWR0C1eXK0+kgwdX2UKGgGaAloD0MIUtfa+1QVFcCUhpRSlGgVSzJoFkdAtXlWQXAM2HV9lChoBmgJaA9DCDV8C+vGyx/AlIaUUpRoFUsyaBZHQLV5OalUIcB1fZQoaAZoCWgPQwgaTwRxHq4jwJSGlFKUaBVLMmgWR0C1eR1Iy0rtdX2UKGgGaAloD0MIl6yKcJNZJsCUhpRSlGgVSzJoFkdAtXnrZCfHxXV9lChoBmgJaA9DCAcnol9b7xLAlIaUUpRoFUsyaBZHQLV5ztm+TNd1fZQoaAZoCWgPQwilhGBVvYwqwJSGlFKUaBVLMmgWR0C1ebKfra/RdX2UKGgGaAloD0MIqkTZW8qRI8CUhpRSlGgVSzJoFkdAtXmWgBcRlHV9lChoBmgJaA9DCBwpWyTtlinAlIaUUpRoFUsyaBZHQLV6YcGkep51fZQoaAZoCWgPQwi2L6AX7rwRwJSGlFKUaBVLMmgWR0C1ekVMuez2dX2UKGgGaAloD0MIbeUl/5PvIMCUhpRSlGgVSzJoFkdAtXoosf7rLXV9lChoBmgJaA9DCPG8VGzMIyHAlIaUUpRoFUsyaBZHQLV6DER8MNN1fZQoaAZoCWgPQwh7Mv/om9QPwJSGlFKUaBVLMmgWR0C1etIUJv5ydX2UKGgGaAloD0MI8+SaApktIMCUhpRSlGgVSzJoFkdAtXq1YU34sXV9lChoBmgJaA9DCKEPlrGhKxnAlIaUUpRoFUsyaBZHQLV6mMbWEsd1fZQoaAZoCWgPQwh1IOup1Q8lwJSGlFKUaBVLMmgWR0C1enxwQ176dX2UKGgGaAloD0MIVu9wOzRIMMCUhpRSlGgVSzJoFkdAtXtK/47A+XV9lChoBmgJaA9DCOihtg2jRDTAlIaUUpRoFUsyaBZHQLV7LnQID5l1fZQoaAZoCWgPQwhTQrCqXr4lwJSGlFKUaBVLMmgWR0C1exHeFcptdX2UKGgGaAloD0MIGCMShZZlFcCUhpRSlGgVSzJoFkdAtXr1ic5Ke3V9lChoBmgJaA9DCOkmMQisBCLAlIaUUpRoFUsyaBZHQLV7tGWUr091fZQoaAZoCWgPQwjt0obD0nAdwJSGlFKUaBVLMmgWR0C1e5e2y9mIdX2UKGgGaAloD0MIkx0bgXhlIsCUhpRSlGgVSzJoFkdAtXt7GuLaVXV9lChoBmgJaA9DCHuFBfcDRiXAlIaUUpRoFUsyaBZHQLV7XtOmBOJ1fZQoaAZoCWgPQwgjS+ZY3hUvwJSGlFKUaBVLMmgWR0C1fCRjjJdTdX2UKGgGaAloD0MI1J6Sc2KnLcCUhpRSlGgVSzJoFkdAtXwH2ZiNKnV9lChoBmgJaA9DCLL0oQvqGxrAlIaUUpRoFUsyaBZHQLV760Re1KJ1fZQoaAZoCWgPQwgEOL2L9wMuwJSGlFKUaBVLMmgWR0C1e87OzIFNdX2UKGgGaAloD0MI8tO4N7+pKMCUhpRSlGgVSzJoFkdAtXyTjABT43V9lChoBmgJaA9DCAIoRpbMERfAlIaUUpRoFUsyaBZHQLV8dxFAmiR1fZQoaAZoCWgPQwhnfcoxWVwdwJSGlFKUaBVLMmgWR0C1fFp8F6iTdX2UKGgGaAloD0MIavtXVpr8JMCUhpRSlGgVSzJoFkdAtXw+N+9alnV9lChoBmgJaA9DCODaiZKQbDDAlIaUUpRoFUsyaBZHQLV8+TwlSjx1fZQoaAZoCWgPQwh9s82N6akTwJSGlFKUaBVLMmgWR0C1fNyOearndX2UKGgGaAloD0MImFDB4QWxHMCUhpRSlGgVSzJoFkdAtXy/8R+SbHV9lChoBmgJaA9DCANckC3LxyDAlIaUUpRoFUsyaBZHQLV8o9/jKgZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -8.523256489261986, "std_reward": 1.5937291964265652, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-03T21:56:05.924565"}
 
1
+ {"mean_reward": -9.908470454718918, "std_reward": 3.796260395377614, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-05T05:30:34.594161"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:22724ee9de29c81acc7b9d1d2022ee7e83390ce36a6e03b667cbee11d4dd1931
3
  size 2387
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52e9cffb5589f8b165ee572015918e6cd5852848b0e63ce7b3bc8279581c86d1
3
  size 2387