smartgmin's picture
Upload TFViTForImageClassification
cbbaadc verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_keras_callback
model-index:
  - name: Entrenal_eyes_5clasess_withOther_model
    results: []

Entrenal_eyes_5clasess_withOther_model

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0845
  • Train Accuracy: 0.9283
  • Train Top-3-accuracy: 0.9936
  • Validation Loss: 0.4386
  • Validation Accuracy: 0.9313
  • Validation Top-3-accuracy: 0.9940
  • Epoch: 6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 847, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train Top-3-accuracy Validation Loss Validation Accuracy Validation Top-3-accuracy Epoch
0.8358 0.6703 0.9165 0.5139 0.7995 0.9693 0
0.3540 0.8366 0.9783 0.4737 0.8589 0.9835 1
0.2235 0.8749 0.9862 0.3874 0.8876 0.9884 2
0.1607 0.8972 0.9898 0.4559 0.9045 0.9908 3
0.1204 0.9109 0.9914 0.4410 0.9163 0.9921 4
0.0961 0.9208 0.9927 0.4393 0.9246 0.9932 5
0.0845 0.9283 0.9936 0.4386 0.9313 0.9940 6

Framework versions

  • Transformers 4.44.2
  • TensorFlow 2.15.1
  • Datasets 3.0.0
  • Tokenizers 0.19.1