|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: Entrnal_5class_agumm_last_newV7_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# Entrnal_5class_agumm_last_newV7_model |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.0959 |
|
- Train Accuracy: 0.9365 |
|
- Train Top-3-accuracy: 0.9913 |
|
- Validation Loss: 0.3424 |
|
- Validation Accuracy: 0.9390 |
|
- Validation Top-3-accuracy: 0.9917 |
|
- Epoch: 9 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 620, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |
|
|:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| |
|
| 1.1895 | 0.4833 | 0.8342 | 0.8125 | 0.6525 | 0.9200 | 0 | |
|
| 0.5511 | 0.7329 | 0.9448 | 0.4587 | 0.7829 | 0.9601 | 1 | |
|
| 0.3174 | 0.8164 | 0.9677 | 0.3909 | 0.8395 | 0.9735 | 2 | |
|
| 0.2299 | 0.8576 | 0.9772 | 0.3711 | 0.8709 | 0.9802 | 3 | |
|
| 0.1699 | 0.8824 | 0.9824 | 0.3564 | 0.8920 | 0.9842 | 4 | |
|
| 0.1344 | 0.9003 | 0.9856 | 0.3389 | 0.9073 | 0.9865 | 5 | |
|
| 0.1187 | 0.9131 | 0.9875 | 0.3391 | 0.9183 | 0.9884 | 6 | |
|
| 0.1060 | 0.9229 | 0.9891 | 0.3424 | 0.9267 | 0.9898 | 7 | |
|
| 0.0992 | 0.9304 | 0.9903 | 0.3426 | 0.9334 | 0.9908 | 8 | |
|
| 0.0959 | 0.9365 | 0.9913 | 0.3424 | 0.9390 | 0.9917 | 9 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- TensorFlow 2.15.1 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |
|
|