Entrnal_eyes_data_5class_RVO_newNormal_resize_224_model
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0885
- Train Accuracy: 0.9332
- Train Top-3-accuracy: 0.9946
- Validation Loss: 0.2622
- Validation Accuracy: 0.9369
- Validation Top-3-accuracy: 0.9950
- Epoch: 6
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 777, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch |
---|---|---|---|---|---|---|
0.9273 | 0.5844 | 0.9067 | 0.5047 | 0.7651 | 0.9651 | 0 |
0.3467 | 0.8197 | 0.9763 | 0.3231 | 0.8519 | 0.9828 | 1 |
0.2263 | 0.8717 | 0.9862 | 0.3327 | 0.8846 | 0.9886 | 2 |
0.1624 | 0.8956 | 0.9902 | 0.2742 | 0.9047 | 0.9914 | 3 |
0.1247 | 0.9124 | 0.9923 | 0.2696 | 0.9190 | 0.9931 | 4 |
0.1000 | 0.9243 | 0.9937 | 0.2560 | 0.9292 | 0.9942 | 5 |
0.0885 | 0.9332 | 0.9946 | 0.2622 | 0.9369 | 0.9950 | 6 |
Framework versions
- Transformers 4.44.2
- TensorFlow 2.15.1
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 17
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for smartgmin/Entrnal_eyes_data_5class_RVO_newNormal_resize_224_model
Base model
google/vit-base-patch16-224-in21k