Entrnal_eyes_data_6_true_agoiment211_model2

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0883
  • Train Accuracy: 0.9406
  • Train Top-3-accuracy: 0.9940
  • Validation Loss: 0.2930
  • Validation Accuracy: 0.9430
  • Validation Top-3-accuracy: 0.9943
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 620, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train Top-3-accuracy Validation Loss Validation Accuracy Validation Top-3-accuracy Epoch
1.1642 0.5159 0.8895 0.8054 0.6679 0.9485 0
0.5389 0.7360 0.9637 0.4377 0.7847 0.9737 1
0.3063 0.8169 0.9788 0.3756 0.8425 0.9825 2
0.2024 0.8607 0.9848 0.3307 0.8758 0.9868 3
0.1515 0.8875 0.9882 0.3064 0.8976 0.9893 4
0.1205 0.9058 0.9902 0.2965 0.9127 0.9909 5
0.1071 0.9184 0.9916 0.2962 0.9234 0.9921 6
0.0969 0.9277 0.9926 0.2831 0.9316 0.9930 7
0.0948 0.9348 0.9934 0.2905 0.9379 0.9937 8
0.0883 0.9406 0.9940 0.2930 0.9430 0.9943 9

Framework versions

  • Transformers 4.44.2
  • TensorFlow 2.15.1
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
16
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for smartgmin/Entrnal_eyes_data_6_true_agoiment211_model2

Finetuned
(1967)
this model