smartgmin's picture
Upload TFViTForImageClassification
644c700 verified
|
raw
history blame
2.68 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_keras_callback
model-index:
  - name: glacoma_andOther_model1
    results: []

glacoma_andOther_model1

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0575
  • Train Accuracy: 0.9403
  • Train Top-3-accuracy: 0.9984
  • Validation Loss: 0.2329
  • Validation Accuracy: 0.9442
  • Validation Top-3-accuracy: 0.9985
  • Epoch: 5

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1266, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train Top-3-accuracy Validation Loss Validation Accuracy Validation Top-3-accuracy Epoch
0.5871 0.7237 0.9808 0.3574 0.8358 0.9916 0
0.2606 0.8643 0.9942 0.2785 0.8821 0.9958 1
0.1643 0.8966 0.9966 0.2490 0.9077 0.9971 2
0.1114 0.9168 0.9975 0.2644 0.9239 0.9978 3
0.0797 0.9301 0.9980 0.2345 0.9353 0.9982 4
0.0575 0.9403 0.9984 0.2329 0.9442 0.9985 5

Framework versions

  • Transformers 4.44.2
  • TensorFlow 2.15.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1