Whisper_Cleverlytics

Usage

To run the model, first install the Transformers library through the GitHub repo.

pip install --upgrade pip
pip install --upgrade git+https://github.com/huggingface/transformers.git accelerate datasets[audio]
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
#from datasets import load_dataset

device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "smerchi/Arabic-Morocco-Speech_To_Text"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=False, use_safetensors=True
)
model.to(device)

processor = AutoProcessor.from_pretrained(model_id)

pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=30,
    batch_size=16,
    return_timestamps=True,
    torch_dtype=torch_dtype,
    device=device,
)

audio="/content/audio.mp3"

%time result = pipe(audio)
print(result["text"],)

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • num_epochs: 20

Training results

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.16.0
  • Tokenizers 0.14.1
Downloads last month
90
Safetensors
Model size
1.54B params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for smerchi/Arabic-Morocco-Speech_To_Text

Finetuned
(389)
this model

Space using smerchi/Arabic-Morocco-Speech_To_Text 1