|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:7033 |
|
- loss:GISTEmbedLoss |
|
base_model: BAAI/bge-small-en-v1.5 |
|
datasets: [] |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@5 |
|
- cosine_ndcg@10 |
|
- cosine_ndcg@100 |
|
- cosine_mrr@5 |
|
- cosine_mrr@10 |
|
- cosine_mrr@100 |
|
- cosine_map@100 |
|
- dot_accuracy@1 |
|
- dot_accuracy@5 |
|
- dot_accuracy@10 |
|
- dot_precision@1 |
|
- dot_precision@5 |
|
- dot_precision@10 |
|
- dot_recall@1 |
|
- dot_recall@5 |
|
- dot_recall@10 |
|
- dot_ndcg@5 |
|
- dot_ndcg@10 |
|
- dot_ndcg@100 |
|
- dot_mrr@5 |
|
- dot_mrr@10 |
|
- dot_mrr@100 |
|
- dot_map@100 |
|
widget: |
|
- source_sentence: What is packaged drinking water? |
|
sentences: |
|
- '''26.6 Packaged Drinking Water (other than mineral water) It can be defined |
|
as water derived from the surface water or underground water or sea water which |
|
is subjected to herein-under specified treatments, namely decantation, filtration, |
|
combination of filtration, aerations, filtration with membrane filter depth filter, |
|
cartridge filter, activated carbon filtration, de-mineralization, remineralization, |
|
reverse osmosis and packed after disinfecting the water to a level that shall |
|
not lead any harmful contamination in the drinking water by means of chemical |
|
agents or physical methods to reduce the number of micro-organisms to level beyond |
|
scientifically accepted level for foods safety or its susceptibility. The standards, |
|
packaging and labelling requirements have also been specified under FSSAI rules.''' |
|
- '''Some fruit or vegetable powders are produced from juices, concentrates, or |
|
pulps by using a spray drying technique. Dry powders can be directly used as important |
|
constituents of dry soups, yogurt, etc. The drying is achieved by spraying of |
|
the slurry into an airstream at a temperature of 138°C to 150°C and introducing |
|
cold dry air either into the outlet end of the dryer or to the dryer walls to |
|
cool them to 38°C– 50°C. The most commonly used atomizers are rotary wheel and |
|
single-fluid pressure nozzle. A wide range of fruit and vegetable powders can |
|
be dried, agglomerated, and instantized in spray drying units, specially equipped |
|
with an internal static fluidized bed, integral filter, or external vibrofluidizer. |
|
Bananas, peaches, apricots, and to a lesser extent citrus powders are examples |
|
of products dried by such techniques.''' |
|
- '''LEAF FEEDER 7. Leaf webber , Eucosma critica, Eucosmidae, Lepidoptera Symptom |
|
of damage: During vegetative stage of the crop, the caterpillar damages leaves |
|
by webbing, while at the floral stages of the crop they enter the buds, flowers |
|
and pods and feed on the immature seeds. Nature of damage: Young larva gets itself |
|
concealed into the frass produced during the course of scratching. The grown-up |
|
larva then draws the two leaves together and spins a thread between them, in which |
|
it passes later instar and also pupates. Egg: Oval, creamy white in colour, laid |
|
singly in leaves, petioles or stem. Larva: Young larvae are pale-yellow in colour, |
|
moderately stout, smooth, except for a few short scattered hairs. It hibernates |
|
in larval form. Pupa: Yellowish in colour, gradually turn to light-brown and finally |
|
to dark brown. Pupates in thin papery white silken cocoon. Adult: Dusky brown |
|
with forewings having four black dots and a silvery transparent mark''' |
|
- source_sentence: What are the different geographical regions of Uttar Pradesh? |
|
sentences: |
|
- '''......................................... food grains. Table - Different climates, |
|
regions, conditions, and geographical regions of Uttar Pradesh Bhawar and Terai |
|
Western Plains Central Western Region Plains Saharanpur, Bijnor Ganga, Bijnor |
|
of Jamuna Doab, Moradabad, Situation Rampur, Moradabad District Saharanpur Rampur, |
|
Bareilly, Pilibhit, Bareilly Muzaffarnagar, Meerut Shahjahanpur, Badaun, Lakhimpur, |
|
Ghaziabad, Bulandshahr Jyotiba Phule Nagar Baghpat, Gautam Buddha Nagar 2 3 4 |
|
54. Unirrigated stage * Early maturing * Straight sowing Govinda, Govinda, Govinda |
|
Dry sowing Narendra-8 Narendra-8 Narendra-97 Narendra-97 + Planting Govinda, Govinda, |
|
Govinda GovindaNarendra-80 Dry sowing Govinda, Govinda-80 Dry sowing Dry sowing |
|
Dry sowing Dry sowing Malaviya Paddy-2 (HUR-3022) 2. Irrigated stage + Early maturing |
|
day Narendra-8 Narendra-48 Narendra-8 02''' |
|
- '''(4) The Chief Executive shall be entrusted with substantial powers of management |
|
as the Board may determine. (5) Without prejudice to the generality of sub-section |
|
(4), the Chief Executive may exercise the powers and discharge the functions, |
|
namely:- (a) do administrative acts of a routine nature including managing the |
|
day-to-day affairs of the Producer Company; (b) operate bank accounts or authorise |
|
any person, subject to the general or special approval of the Board in this behalf, |
|
to operate the bank account; (c) *make arrangements for safe custody of cash |
|
and other assets of the Producer Company;* (d) sign such documents as may be authorised |
|
by the Board, for and on behalf of the company; (e) maintain proper books of account; |
|
prepare annual accounts and audit thereof; place the audited accounts before |
|
the Board and in the annual general meeting of the Members; (f) furnish Members |
|
with periodic information to appraise them of the operation and functions of the |
|
Producer Company; (g) make appointments to posts in accordance with the powers |
|
dele-gated to him by the Board; (h) *assist the Board in the formulation of goals, |
|
objectives, strategies, plans and policies;* i) advise the Board with respect |
|
to legal and regulatory matters concerning the proposed and ongoing activities |
|
and take necessary action in respect thereof; (j) *exercise the powers as may |
|
be necessary in the ordinary course of business;* (k) discharge such other functions, |
|
and exercise such other powers, as may be delegated by the Board. (6) The Chief |
|
Executive shall manage the affairs of the Producer Company under the general superintendence, |
|
direction and control of the Board and be accountable for the performance of the |
|
Producer Company.''' |
|
- '''29.5.4 Firing/Drying Once optimum fermentation is achieved, it is necessary |
|
to destroy enzymes. The „dhool‟ is fed to the driers by conveyors at a temperature |
|
of 90-120 o C for 12-15 minutes. This process reduces the moisture content of |
|
fermented tea from ~ 60% to < 4%. It terminates fermentation by inactivating the |
|
enzymes. It makes the product fit for sorting and packaging. In driers the inlet |
|
and outlet temperature may range from 82-98 o C and 45-55 o C respectively. Fluidized |
|
bed driers are being used recently. In this the blown hot air moves the dhool |
|
by process of fluidization. The disadvantage of firing is loss of considerable |
|
amount of volatile aroma compounds.''' |
|
- source_sentence: What are some pests that infest mung bean crops during the Kharif |
|
season? |
|
sentences: |
|
- '''Sowing Time and Temperature: As soon as the rains begin, millet should be sown |
|
by the second week of July. The millet plant needs a temperature of 25 ° C to |
|
germinate and 30 to 3 ° C to grow. Its plants give good yield even at 40 ° C. |
|
Millet sowing method: In natural farming method, sowing millet on ridge is considered |
|
the best method. Sowing on the bed reduces the quantity of seed and saves up to |
|
70% of water. And when the drain is irrigated, the roots of the crop grown on |
|
the bed move towards the water in search of moisture, which makes the roots more |
|
developed and the plant stronger. And if it rains and the field is waterlogged, |
|
there is less chance of damage to the crop grown on the beds. Seed rate: The natural |
|
cultivation of millets requires 5 kg / ha of certified seed. Seed treatment: Millet |
|
seeds are sown by treating them with \''Beejamrut,\'' which protects the seeds |
|
from soil-borne diseases. Treating the seed leads to better germination and higher |
|
yield as a crop. Nutrient management: Prior to sowing for nutrient availability.''' |
|
- '''4. Collection of Corcyra eggs : Corcyra eggs are loosely laid and they are |
|
collected through the wire mesh at the bottom on a receiving container with funnel |
|
setup on an enamel tray. Eggs are to be collected daily and continuously for 4 |
|
days from each drum.. On the fifth day it is to be vacated and cleaned. A sheet |
|
of blotting paper is spread on the tray or in the funnel set up. It retains most |
|
of the moths scales and body fragments while the eggs were easily rolled out during |
|
cleaning. The eggs are cleaned and separated from the moth’s scales by using a |
|
new gadget namely Corcyra moth scales and egg separator developed by TNAU.''' |
|
- '''Covering - Covering crops in mung bean covers the empty space by spreading |
|
the residues obtained from crops such as stalks, gasses and pollen in the husk, |
|
which increases the amount of organic carbon in the crop and along with the back |
|
formation of the cover, draws water from the atmosphere and gives it to the plants |
|
as moisture. Irrigation Management - Generally, Kharif crops do not require irrigation. |
|
If there is a lack of rain, an irrigation must be done while the pods are forming. |
|
Weed control - In natural farming, weeds grow and are removed by hand. Application |
|
of Jeevamrut - When mung beans are grown in a natural way, the first spraying |
|
of Jeevamrut is done at the initial stage of the crop and the second spraying |
|
is done at the time of fruiting. Pest management - In kharif, there is an infestation |
|
of pests like termites, scorpions, mongoose, whitefly, green oil, leaf beetle, |
|
legume borer, and succulent, etc. in mung bean crops, for the control of which |
|
spraying of decoction and firewood should be done at an interval of one day.''' |
|
- source_sentence: How do corporates support POs with primary processing machinery? |
|
sentences: |
|
- '''27.1 Introduction Fruit beverages and drinks are one of the popular categories |
|
of beverages that are consumed across the globe. The fruit beverages and drinks |
|
are easily digestible, highly refreshing, thirst quenching, appetizing and nutritionally |
|
far superior to most of the synthetic and aerated drinks. In recent past the consumption |
|
of fruit based beverages and drinks has increased at a fast rate. Fruit juices |
|
or pulp used for the preparation of these products are subjected to minimal processing |
|
operations like filteration, clarification and pasteurization. The fruit juice |
|
or pulp, are mixed with ingredients like sugar, acid, stabilizers, micronutrients |
|
and preservative to develop beverages and drinks. There are various categories |
|
of fruit juice or pulp based beverages and drinks which are listed below. Natural |
|
fruit juices, sweetened juices, ready-to-serve beverages, nectar, cordial, squash, |
|
crush, syrup, fruit juice concentrate and fruit juice powder belong to the category |
|
of non-alcoholic and non-carbonated beverages. The principle groups of fruit beverages |
|
are as follows: • Ready-to-Serve (RTS) pre-packaged Beverages • Fruit juice and |
|
Nectars • Dilutable beverages''' |
|
- '''Dairy animals/ Pigs/ Goats Protection during rains Heavy rainfall and high |
|
humidity predisposes mastitis in crossbred cows hence keep dairy shed clean and |
|
dry. Use post milking teat dip cup to prevent mastitis. Don’ts feed mouldy feed |
|
and fodder which causes detrimental effects on health of animals. i.e. black spots |
|
on stored dry fodder, unacceptable odour of oil cakes. In rainy season, dairy |
|
animals suffer with tick infestation. 5 to 10% ticks present on body of animals |
|
and 90 to 95 % present in the shed. Hence spray ectoparasiticide i.e., cypermethrin |
|
or deltamethrin 2-4% on animals’ body and also in the shed. Use flamegun to burn |
|
floor and walls of shed every 10 to 15 days. Hybrid Napier perennial fodder CO-5 |
|
performance is excellent in in Goa climatic condition. Farmer can get 300 to 350 |
|
metric tons of green fodder yield with six to seven cutting a year. Farmer can |
|
go for plantation in Kharif. Sololy grazing of dairy animals on lush greens may |
|
cause digestive disturbance and comparatively low fat in milk hence always daily |
|
offer dry fodder along with greens. Avoid water leakages in the shed which causes |
|
slippery floor. Apply lime in and around shed which causes disinfection and keep |
|
floor dry which helps to rest animals on the floor.''' |
|
- ''' 7.22 What support is available from government departments for market linkage? |
|
Many State Governments have schemes for preferential procurement of produce from |
|
POs. For example, procurement of certified seeds through POs has been implemented |
|
by the Government of Chhattisgarh. The facilitating agency should be able to get |
|
the relevant information from the respective Governments. 7.23 What support is |
|
available from corporates for market linkage? The corporates need continuous supply |
|
of desired quality produce for processing and value addition. Therefore, they |
|
prefer to enter into contract with few producer organisations who will meet their |
|
requirement. Usually the following mechanisms are adopted: a. Retail chains tie |
|
up with POs for procurement. b. Corporates extend dealership for farm machinery |
|
and inputs to POs. c. Corporates provide primary processing machinery to PO with |
|
buy-back arrangement for the produce''' |
|
- source_sentence: What does an Industry Analysis entail? |
|
sentences: |
|
- '''Aggregating producers into collectives is one of the best mechanism to improve |
|
access of small producers to investment, technology and market. The facilitating |
|
agency should however keep the following factors in view: a. Types of small |
|
scale producers in the target area, volume of production, socioeconomic status, |
|
marketing arrangement b. Sufficient demand in the existing market to absorb the |
|
additional production without significantly affecting the prices c. Willingness |
|
of producers to invest and adopt new technology, if identified, to increase productivity |
|
or quality of produce d. Challenges in the market chain and market environment |
|
e. Vulnerability of the market to shocks, trends and seasonality f. Previous |
|
experience of collective action (of any kind) in the community g. Key commodities, |
|
processed products or semi-finished goods demanded by major retailers or processing |
|
companies in the surrounding areas/districts h. Support from Government Departments, |
|
NGOs, specialist support agencies and private companies for enterprise development i. |
|
Incentives for members (also disincentives) for joining the PO Keeping in view |
|
the sustainability of a Producer Organisation, a flow chart of activities along |
|
with timeline, verifiable indicators and risk factors is provided at Attachment-5.''' |
|
- '''a. Executive summary b. Business Description c. Industry/Sector analysis |
|
d. Marketing plan e. Operations plan f. Financial plan 7.8 What is included |
|
in an executive summary? The executive summary is an abstract containing the important |
|
points of the business plan. Its purpose is to communicate the plan in a convincing |
|
way to important audiences, such as potential investors, so they will read further. |
|
It may be the only chapter of the business plan a reader uses to make a quick |
|
decision on the proposal. As such, it should fulfill the reader''s (financier''s) |
|
expectations. It is prepared after the total plan has been written. The executive |
|
summary should describe the following: a. The industry and market environment |
|
in which the opportunity will develop and flourish b. The special and unique |
|
business opportunity—the problem the product or service will be solving c. |
|
The strategies for success—what differentiates the product or service from the competitors'' |
|
products d. The financial potential—the anticipated risk and reward of the business |
|
e. The management team—the people who will achieve the results f. The resources |
|
or capital being requested—a clear statement to your readers about what you hope |
|
to gain from them, whether it is capital or other resources 7.9 What is included |
|
in a Business Description? The business description explains the business concept |
|
by giving a brief yet informative picture of the history, the basic nature, and |
|
the purpose of the business, including business objectives and why the business |
|
will be successful. The purposes of the business description are to: a. Express |
|
clearly understanding of the business concept b. Share enthusiasm for the venture c. |
|
Meet the expectations of the reader by providing a realistic picture of the business venture 7.10 |
|
What is Industry Analysis?''' |
|
- '''-Black cloth, -Khada cloth -Saw dust -0.025 % Sodium hypochlorite -Chick pea |
|
/ groundnut seedlings -Bleaching powder -Coffee powder -Multivitamin syrup -10 |
|
% sucrose -Beaker 500 ml -Measuring cylinder -Egg laying chamber Procedure : 1. |
|
Release 10 males and 5 females at 2: 1 ratio in plastic containers and cover |
|
with thin black cloth . ( Female require multiple mating to lay fertile eggs ) |
|
. 2. To induce the moths to lay more eggs multivitamin syrup 2 drops + 10 % sucrose |
|
is given through cotton swabs 3. Daily collect the egg cloth after 3 rd day of |
|
copulation . Provide 25- 28 o C , 80- 90 % R.H during egg laying. A female lays |
|
300 –700 eggs 4. Sterilize the egg cloth in 0.025 % sodium hypochlorite for ten |
|
seconds and immediately dip the egg cloth in distilled water in 3 different buckets |
|
having distilled water one by one and then dry it in shade. 5. Raise chickpea |
|
or groundnut seedlings in a week interval and provide for feeding 6. Place newly |
|
hatched larvae on chickpea/groundnut seedlings along with egg cloth for one day |
|
or place 3-4 eggs in vials containing artificial diet 7. Pick young larvae and |
|
rear on bhendi vegetable individually in penicillin vials to avoid cannibalism. |
|
8. Daily change diet till pre pupal stage 9. Collect pre –pupae and allow for |
|
pupation in plastic container having saw dust 10. Pupae sterilization is done |
|
with the help of coffee filter by dip method 11. Transfer the pupae inside the |
|
egg lying chamber by keeping them on a separate petri dish without lid.''' |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5 |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: val evaluator |
|
type: val_evaluator |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.5127877237851662 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@5 |
|
value: 0.9360613810741688 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9578005115089514 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.5127877237851662 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@5 |
|
value: 0.18721227621483372 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09578005115089515 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.5127877237851662 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@5 |
|
value: 0.9360613810741688 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9578005115089514 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@5 |
|
value: 0.7467744044168642 |
|
name: Cosine Ndcg@5 |
|
- type: cosine_ndcg@10 |
|
value: 0.7540621914922426 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_ndcg@100 |
|
value: 0.7627409192698384 |
|
name: Cosine Ndcg@100 |
|
- type: cosine_mrr@5 |
|
value: 0.6829497016197776 |
|
name: Cosine Mrr@5 |
|
- type: cosine_mrr@10 |
|
value: 0.6861121260098237 |
|
name: Cosine Mrr@10 |
|
- type: cosine_mrr@100 |
|
value: 0.6880792251529196 |
|
name: Cosine Mrr@100 |
|
- type: cosine_map@100 |
|
value: 0.6880792251529201 |
|
name: Cosine Map@100 |
|
- type: dot_accuracy@1 |
|
value: 0.5127877237851662 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@5 |
|
value: 0.9360613810741688 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.9578005115089514 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.5127877237851662 |
|
name: Dot Precision@1 |
|
- type: dot_precision@5 |
|
value: 0.18721227621483372 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.09578005115089515 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.5127877237851662 |
|
name: Dot Recall@1 |
|
- type: dot_recall@5 |
|
value: 0.9360613810741688 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.9578005115089514 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@5 |
|
value: 0.7467744044168642 |
|
name: Dot Ndcg@5 |
|
- type: dot_ndcg@10 |
|
value: 0.7540621914922426 |
|
name: Dot Ndcg@10 |
|
- type: dot_ndcg@100 |
|
value: 0.7627409192698384 |
|
name: Dot Ndcg@100 |
|
- type: dot_mrr@5 |
|
value: 0.6829497016197776 |
|
name: Dot Mrr@5 |
|
- type: dot_mrr@10 |
|
value: 0.6861121260098237 |
|
name: Dot Mrr@10 |
|
- type: dot_mrr@100 |
|
value: 0.6880792251529196 |
|
name: Dot Mrr@100 |
|
- type: dot_map@100 |
|
value: 0.6880792251529201 |
|
name: Dot Map@100 |
|
--- |
|
|
|
# SentenceTransformer based on BAAI/bge-small-en-v1.5 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 384 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'What does an Industry Analysis entail?', |
|
"'a. Executive summary b. Business Description c. Industry/Sector analysis d. Marketing plan e. Operations plan f. Financial plan 7.8 What is included in an executive summary? The executive summary is an abstract containing the important points of the business plan. Its purpose is to communicate the plan in a convincing way to important audiences, such as potential investors, so they will read further. It may be the only chapter of the business plan a reader uses to make a quick decision on the proposal. As such, it should fulfill the reader's (financier's) expectations. It is prepared after the total plan has been written. The executive summary should describe the following: a. The industry and market environment in which the opportunity will develop and flourish b. The special and unique business opportunity—the problem the product or service will be solving c. The strategies for success—what differentiates the product or service from the competitors' products d. The financial potential—the anticipated risk and reward of the business e. The management team—the people who will achieve the results f. The resources or capital being requested—a clear statement to your readers about what you hope to gain from them, whether it is capital or other resources 7.9 What is included in a Business Description? The business description explains the business concept by giving a brief yet informative picture of the history, the basic nature, and the purpose of the business, including business objectives and why the business will be successful. The purposes of the business description are to: a. Express clearly understanding of the business concept b. Share enthusiasm for the venture c. Meet the expectations of the reader by providing a realistic picture of the business venture 7.10 What is Industry Analysis?'", |
|
"'-Black cloth, -Khada cloth -Saw dust -0.025 % Sodium hypochlorite -Chick pea / groundnut seedlings -Bleaching powder -Coffee powder -Multivitamin syrup -10 % sucrose -Beaker 500 ml -Measuring cylinder -Egg laying chamber Procedure : 1. Release 10 males and 5 females at 2: 1 ratio in plastic containers and cover with thin black cloth . ( Female require multiple mating to lay fertile eggs ) . 2. To induce the moths to lay more eggs multivitamin syrup 2 drops + 10 % sucrose is given through cotton swabs 3. Daily collect the egg cloth after 3 rd day of copulation . Provide 25- 28 o C , 80- 90 % R.H during egg laying. A female lays 300 –700 eggs 4. Sterilize the egg cloth in 0.025 % sodium hypochlorite for ten seconds and immediately dip the egg cloth in distilled water in 3 different buckets having distilled water one by one and then dry it in shade. 5. Raise chickpea or groundnut seedlings in a week interval and provide for feeding 6. Place newly hatched larvae on chickpea/groundnut seedlings along with egg cloth for one day or place 3-4 eggs in vials containing artificial diet 7. Pick young larvae and rear on bhendi vegetable individually in penicillin vials to avoid cannibalism. 8. Daily change diet till pre pupal stage 9. Collect pre –pupae and allow for pupation in plastic container having saw dust 10. Pupae sterilization is done with the help of coffee filter by dip method 11. Transfer the pupae inside the egg lying chamber by keeping them on a separate petri dish without lid.'", |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `val_evaluator` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.5128 | |
|
| cosine_accuracy@5 | 0.9361 | |
|
| cosine_accuracy@10 | 0.9578 | |
|
| cosine_precision@1 | 0.5128 | |
|
| cosine_precision@5 | 0.1872 | |
|
| cosine_precision@10 | 0.0958 | |
|
| cosine_recall@1 | 0.5128 | |
|
| cosine_recall@5 | 0.9361 | |
|
| cosine_recall@10 | 0.9578 | |
|
| cosine_ndcg@5 | 0.7468 | |
|
| cosine_ndcg@10 | 0.7541 | |
|
| cosine_ndcg@100 | 0.7627 | |
|
| cosine_mrr@5 | 0.6829 | |
|
| cosine_mrr@10 | 0.6861 | |
|
| cosine_mrr@100 | 0.6881 | |
|
| **cosine_map@100** | **0.6881** | |
|
| dot_accuracy@1 | 0.5128 | |
|
| dot_accuracy@5 | 0.9361 | |
|
| dot_accuracy@10 | 0.9578 | |
|
| dot_precision@1 | 0.5128 | |
|
| dot_precision@5 | 0.1872 | |
|
| dot_precision@10 | 0.0958 | |
|
| dot_recall@1 | 0.5128 | |
|
| dot_recall@5 | 0.9361 | |
|
| dot_recall@10 | 0.9578 | |
|
| dot_ndcg@5 | 0.7468 | |
|
| dot_ndcg@10 | 0.7541 | |
|
| dot_ndcg@100 | 0.7627 | |
|
| dot_mrr@5 | 0.6829 | |
|
| dot_mrr@10 | 0.6861 | |
|
| dot_mrr@100 | 0.6881 | |
|
| dot_map@100 | 0.6881 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 7,033 training samples |
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | |
|
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 15.86 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 116 tokens</li><li>mean: 283.94 tokens</li><li>max: 512 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | |
|
|:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>What role do emulsifying and stabilizing agents play in carbonated water?</code> | <code>'The consumption of carbonated water has increased rapidly. As per FSSAI definitions carbonated water conforming to the standards prescribed for packaged drinking water under Food Safety and Standard act, 2006 impregnated with carbon dioxide under pressure and may contain any of the listed additives singly or in combination. Permitted additives include sweeteners (sugar, liquid glucose, dextrose monohydrate, invert sugar, fructose, Honey) fruits & vegetables extractive, permitted flavouring, colouring matter, preservatives, emulsifying and stabilizing agents, acidulants (citric acid, fumaric acid and sorbitol, tartaric acid, phosphoric acid, lactic acid, ascorbic acid, malic acid), edible gums, salts of sodium, calcium and magnesium, vitamins, caffeine not exceeding 145 ppm, ester gum not exceeding 100 ppm and quinine salts not exceeding 100 ppm. It may contain Sodium saccharin not exceeding 100 ppm or Acesulfame-k 300 ppm or Aspartame not exceeding 700 ppm or sucralose not exceeding 300 ppm.'</code> | |
|
| <code>What is the purpose of the Agri Clinic and Agri Business Centres scheme?</code> | <code>'| Website | # Name of the Scheme | General Nature |\n|--------------------------|-------------------------------|--------------------|\n| of Subsidy | | |\n| Eligible Persons / | | |\n| Institutions | | |\n| 1 Construction of Rural | Agricoop.nic.in | |\n| Godowns | | |\n| Credit linked Back | | |\n| ended (25 to | | |\n| 33.33%) | | |\n| Individuals, Groups | | |\n| of Individuals | | |\n| Registered FPOs, | | |\n| Partnership/ | | |\n| proprietorship | | |\n| concerns / | | |\n| Corporates. SHGs/ | | |\n| NGOs, Autonomous | | |\n| Government Bodies | | |\n| 2 Development/Strengthe | - | |\n| | | |\n| Do- | Agricoop.nic.in | Credit linked Back |\n| ended | ning of Agri. Marketing | |\n| Infrastructure, Grading | | |\n| and Standardisation | | |\n| 3 Agri Clinic and Agri | | |\n| Business Centres | | |\n| www. | | |\n| Agriclinics. net | | |\n| Credit linked Back | | |\n| ended (36 to | | |\n| 44%) | | |\n| Agriculture graduate | | |\n| and others ( refer | | |\n| guidelines) | | |\n| 4 Dairy Entrepreneurship | dahd.nic.in | |\n| Dev Scheme (DEDS) | | |\n| Credit linked Back | | |\n| ended (25 to | | |\n| 33.33%) | | |\n| Individual | | |\n| producers can | | |\n| utilize the | | |\n| scheme. | | |\n| farmers, individual | | |\n| entrepreneurs and | | |\n| groups of | | |\n| unorganized and | | |\n| organized sector. | | |\n| Group of organized | | |\n| sector, includes self- | | |\n| help groups, dairy | | |\n| cooperative | | |\n| societies, Milk | | |\n| unions, milk | | |\n| federation | | |\n| 5 | National Horticulture Mission | nhm.nic.in |\n| Website | # Name of the Scheme | General Nature |\n|-----------------------|-------------------------|---------------------------|\n| of Subsidy | | |\n| Eligible Persons / | | |\n| Institutions | | |\n| Individuals | | |\n| ended Maximum | | |\n| 50 % | | |\n| | | Nursery |\n| Maximum 50 % ( | | |\n| credit linkage not | | |\n| necessary) | | |\n| Cooperative | | |\n| societies/ registered | | |\n| societies / Trusts | | |\n| and incorporated | | |\n| Companies | | |\n| | | Vegetable seed |\n| production | | |\n| Individuals - max. 5 | | |\n| ha | | |\n| Credit linked Back | | |\n| ended Maximum | | |\n| 50 % | | |\n| | | Vegetable seed |\n| production | | |\n| Back ended | | |\n| Maximum 50 % ( | | |\n| credit linkage not | | |\n| necessary) | | |\n| Cooperative | | |\n| societies/ registered | | |\n| societies / Trusts | | |\n| and incorporated | | |\n| Companies | | |\n| | | |\n| gardens | | |\n| | | Fruits ( perennial ) |\n| ended Maximum | | |\n| 75 % | | |\n| Individuals - Max 4 | | |\n| ha- subject to terms | | |\n| and conditions | | |\n| | | Fruits ( non- perennial ) |\n| ended Maximum | | |\n| 50 % | | |\n| Individuals - Max 4 | | |\n| ha- subject to terms | | |\n| and conditions | | |\n| | Subject to | |\n| prescribed cost | | |\n| norms | | |\n| | Cut Flowers | 25% for OF |\n| 40% for SF/MF in | | |\n| general areas and | | |\n| 50% for NER/ | | |\n| Himalayan states | | |\n| | | Spices and aromatic |\n| plants | | |\n| Subject to | | |\n| prescribed cost | | |\n| norms | | |\n| 40% for farmers | | |\n| in General areas, | | |\n| 50% for NER/ | | |\n| Himalayan states | | |\n| 6 | Food Processing | |\n| | | Cold Chain - Non |\n| horticulture | | |\n| Grant in aid / | | |\n| interest subsidy | | |\n| Individuals or | | |\n| groups of | | |\n| entrepreneurs, | | |\n| organizations such | | |\n| as Govt./ PSUs/ Joint | | |\n| Ventures/NGOs/ | | |\n| Cooperatives/ | | |\n| SHG's/ Private | | |\n| Sector Companies | | |\n| and Corporations | | |\n| # Name of the Scheme | General Nature |\n|-------------------------|--------------------|\n| of Subsidy | |\n| Grant in aid | |\n| 50 % to 75% | |\n| | Primary Processing |\n| centre - | |\n| The Scheme is | |\n| applicable to both | |\n| horticulture and non- | |\n| horticulture produce | |\n| such as: fruits, | |\n| vegetables, grains& | |\n| pulses, dairy products, | |\n| meat, poultry and fish | |\n| etc. | |\n| Credit linked back | |\n| ended grants-in- | |\n| aid @ 50% of the | |\n| cost of New | |\n| Reefer Vehicle(s)/ | |\n| Mobile pre- | |\n| cooling van(s) up | |\n| to a maximum of | |\n| Rs. 50.00 lakh | |\n| | Reefer Vehicles- |\n| for purchase of | |\n| standalone reefer | |\n| vehicle/s and mobile | |\n| pre-cooling van/s | |\n| (reefer unit and reefer | |\n| cabinet permanently | |\n| mounted on the vehicle) | |\n| for transporting both | |\n| Horticultural and Non- | |\n| Horticultural produce | |\n| | |\n| | |\n| Website | Eligible Persons / |\n|-----------------------|-----------------------|\n| Institutions | |\n| | individual |\n| entrepreneurs/ | |\n| farmers, group of | |\n| entrepreneur/ | |\n| farmers, | |\n| associations, co- | |\n| operative societies, | |\n| self-help groups, | |\n| non-government | |\n| organizations | |\n| | individual |\n| entrepreneurs, | |\n| Partnership firms, | |\n| Registered Societies, | |\n| Co-operatives, | |\n| NGOs, SHGs, | |\n| Companies and | |\n| Corporations | |'</code> | |
|
| <code>What can be considered as outliers in terms of yield?</code> | <code>'Identification of Outliers: All these above analyses can be used to check whether there was any reason for yield deviation as presented in the CCE data. Then a yield proxy map may be prepared. The Yield proxy map can be derived from remote sensing vegetation indices (single or combination of indices), crop simulation model output, or an integration of various parameters, which are related to crop yield, such as soil, weather (gridded), satellite based products, etc. Whatever, yield proxies to be used, it is the responsibility of the organization to record documentary evidence (from their or other's published work) that the yield proxy is related to the particular crop's yield. Then the IU level yields need to be overlaid on the yield proxy map. Both yield proxy and CCE yield can be divided into 4-5 categories (e.g. Very good, Good, Medium, Poor, Very poor). Wherever there is large mismatch between yield proxy and the CCE yield (more than 2 levels), the CCE yield for that IU can be considered, as outliers.'</code> | |
|
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: |
|
```json |
|
{'guide': SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
), 'temperature': 0.01} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 782 evaluation samples |
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | |
|
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 15.85 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 116 tokens</li><li>mean: 272.65 tokens</li><li>max: 512 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | |
|
|:-----------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>What diseases do the mentioned pulses have resistance to?</code> | <code>'..................................................... pulses. 20. Ta 2IPM - 409-4. _ 2020 (Heera) Meha 2005 (I. P.M. - 99-25) Pusa Vishal 200] H. UM-6 2006 (Malaviya Janakalyani). Malaviya Jyothi 999 (H. UM-) TMV-37 2005T. The BM-37 (t. M. - 99.37) Malaviya 2003 Jan Chetna (H. UM-42) IPM-2-3 2009I. P.M. 2 - 4 20 | 4K. M-2244 (Sweta) 2009K. M-295 (Swati) 20. 2 IPM - 205-7. _ 206 (Virat) I. PM - 40-3._ 206 (Shikha) Kanika 2048 (I. PM - 302-2) 3 dark and medium-grained shiny 65-8060-6560 - 6555-6065-7060 - 6560-6265-7062 - 6560-6265-7052 - 5560-7065-726 -76 7mm. YMV. High resistance to whole U.P. sarcospora leafspot, resistance to leaf crinkle and leaf curl disease, श्रिप्स42-52-44-424-62-42-440.040 -] 2-48-00 - 24-42. Thyme All U.P. Thyme All U.P. Thyme All U.P. Thyme All U.P. Thyme All U.P. Thyme All U.P. Thyme All U.P. Thyme All U.P. Yellow Mosaic, Powdery Mildupilla Mosaic, Whole U.P. Powdery Mildew High Barrier Peela Mosaic, Whole U.P. Priscospora Leafspot High Barrier 82'</code> | |
|
| <code>What do hypertonic drinks have high levels of?</code> | <code>'There are three types of sports drinks all of which contain various levels of fluid, electrolytes, and carbohydrate. • Isotonic drinks have fluid, electrolytes and 6-8% carbohydrate. Isotonic drinks quickly replace fluids lost by sweating and supply a boost of carbohydrate. This kind of drink is the choice for most athletes especially middle and long distance running or team sports. • Hypotonic drinks have fluids, electrolytes and a low level of carbohydrates. Hypotonic drinks quickly replace flids lost by sweating. This kind of drink is suitable for athletes who need fluid without the boost of carbohydrates such as gymnasts. • Hypertonic drinks have high levels of carbohydrates. Hypertonic drinks can be used to supplement daily carbohydrate intake normally after exercise to top up muscle glycogen stores. In long distance events high levels of energy are required and hypertonic drinks'</code> | |
|
| <code>When should sowing be done?</code> | <code>'y Sowing should be done in the first fortnight of June and PR 126,PR 114, PR 121, PR 122, PR 127 are suitable varieties. Divide the field into kiyaras (plot) of desirable size after laser land levelling and apply pre-sowing (rauni) irrigation and prepare field when it comes to tar-wattar (good soil moisture) condition and immediately sow the crop with rice seed drill fitted with inclinedplate metering system or Lucky seed drill (for simultaneously sowing and spray of herbicide) by using 20 to 25 kg seed/ha in 20 cm spaced rows. The seed should be placed at 2-3 cm depth. Before sowing, treat rice seed with 3 g Sprint 75 WS (mencozeb + carbendazim) by dissolving in 10-12 ml water per kg seed; make paste of fungicide solution and rub on the seed.'</code> | |
|
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: |
|
```json |
|
{'guide': SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
), 'temperature': 0.01} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `gradient_accumulation_steps`: 4 |
|
- `learning_rate`: 1e-05 |
|
- `weight_decay`: 0.01 |
|
- `num_train_epochs`: 40 |
|
- `warmup_ratio`: 0.1 |
|
- `load_best_model_at_end`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 8 |
|
- `per_device_eval_batch_size`: 8 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 4 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 1e-05 |
|
- `weight_decay`: 0.01 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 40 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | val_evaluator_cosine_map@100 | |
|
|:-----------:|:--------:|:-------------:|:---------:|:----------------------------:| |
|
| 2.2727 | 500 | 0.2767 | 0.0931 | 0.6449 | |
|
| 4.5455 | 1000 | 0.067 | 0.0777 | 0.6501 | |
|
| 6.8182 | 1500 | 0.0485 | 0.0621 | 0.6678 | |
|
| 9.0909 | 2000 | 0.0361 | 0.0615 | 0.6707 | |
|
| 11.3636 | 2500 | 0.0301 | 0.0687 | 0.6765 | |
|
| 13.6364 | 3000 | 0.0274 | 0.0661 | 0.6733 | |
|
| 15.9091 | 3500 | 0.0223 | 0.0606 | 0.6822 | |
|
| 18.1818 | 4000 | 0.021 | 0.0563 | 0.6834 | |
|
| 20.4545 | 4500 | 0.0203 | 0.0573 | 0.6681 | |
|
| 22.7273 | 5000 | 0.0212 | 0.0637 | 0.6770 | |
|
| 25.0 | 5500 | 0.018 | 0.0580 | 0.6781 | |
|
| 27.2727 | 6000 | 0.0166 | 0.0567 | 0.6781 | |
|
| 29.5455 | 6500 | 0.0194 | 0.0542 | 0.6835 | |
|
| 31.8182 | 7000 | 0.0182 | 0.0547 | 0.6897 | |
|
| 34.0909 | 7500 | 0.0157 | 0.0549 | 0.6899 | |
|
| **36.3636** | **8000** | **0.016** | **0.053** | **0.686** | |
|
| 38.6364 | 8500 | 0.0142 | 0.0541 | 0.6881 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.11.7 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.1 |
|
- PyTorch: 2.3.1+cu121 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### GISTEmbedLoss |
|
```bibtex |
|
@misc{solatorio2024gistembed, |
|
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning}, |
|
author={Aivin V. Solatorio}, |
|
year={2024}, |
|
eprint={2402.16829}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |