license: apache-2.0 | |
base_model: meta-llama/Llama-2-7b-hf | |
tags: | |
- fine-tuned | |
- gt52 | |
- chatbot | |
- custom-dataset | |
language: | |
- en | |
pipeline_tag: text-generation | |
# gpt2-coder | |
## Model Description | |
This is a fine-tuned version of GPT 2 (124.2M parameters) , trained on codeparrot. | |
## Training Details | |
- **Training Data:** [codeparrot] | |
- **Training Method:** Fine-tuning | |
- **Training Duration:** [8 hours/days] | |
- **Hardware:** [V100] | |
## Usage | |
```python | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load model and tokenizer | |
model = AutoModelForCausalLM.from_pretrained("smoothich/gpt2-coder") | |
tokenizer = AutoTokenizer.from_pretrained("smoothich/gpt2-coder") | |
# Generate text | |
inputs = tokenizer("Hello, how are you?", return_tensors="pt") | |
outputs = model.generate(**inputs, max_length=100) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
print(response) | |
``` | |
## Training Parameters | |
- Learning Rate: 5e-4 | |
- Batch Size: 16 | |
- Gradient Accumulation: 16 | |
- Epochs: 1 | |
- Precision: BF16 | |
## Evaluation | |
[Include evaluation metrics if available] | |
## License | |
This model is released under the Apache 2.0 license. | |