smoothieAI commited on
Commit
c309ef5
·
verified ·
1 Parent(s): 15ab9bf

Update pipeline.py

Browse files
Files changed (1) hide show
  1. pipeline.py +1 -1
pipeline.py CHANGED
@@ -1058,6 +1058,7 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
1058
  noise_pred_text = noise_pred_text[:, :, :-wrap_count, :, :]
1059
  noise_pred_uncond_sum[:, :, current_context_start : current_context_start + context_size, :, :] += noise_pred_uncond
1060
  noise_pred_text_sum[:, :, current_context_start : current_context_start + context_size, :, :] += noise_pred_text
 
1061
 
1062
  # print min and max values of noise_pred_uncond_sum and noise_pred_text_sum
1063
  print(f"noise_pred_uncond_sum min: {noise_pred_uncond_sum.min()} max: {noise_pred_uncond_sum.max()}")
@@ -1069,7 +1070,6 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
1069
  # perform guidance
1070
  if do_classifier_free_guidance:
1071
  latent_counter = latent_counter.reshape(1, 1, num_frames, 1, 1)
1072
- print(f"latent_counter min: {latent_counter.min()} max: {latent_counter.max()}")
1073
  noise_pred_uncond = noise_pred_uncond_sum / latent_counter
1074
  noise_pred_text = noise_pred_text_sum / latent_counter
1075
  noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
 
1058
  noise_pred_text = noise_pred_text[:, :, :-wrap_count, :, :]
1059
  noise_pred_uncond_sum[:, :, current_context_start : current_context_start + context_size, :, :] += noise_pred_uncond
1060
  noise_pred_text_sum[:, :, current_context_start : current_context_start + context_size, :, :] += noise_pred_text
1061
+ latent_counter[current_context_start : current_context_start + context_size] += 1
1062
 
1063
  # print min and max values of noise_pred_uncond_sum and noise_pred_text_sum
1064
  print(f"noise_pred_uncond_sum min: {noise_pred_uncond_sum.min()} max: {noise_pred_uncond_sum.max()}")
 
1070
  # perform guidance
1071
  if do_classifier_free_guidance:
1072
  latent_counter = latent_counter.reshape(1, 1, num_frames, 1, 1)
 
1073
  noise_pred_uncond = noise_pred_uncond_sum / latent_counter
1074
  noise_pred_text = noise_pred_text_sum / latent_counter
1075
  noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)