Update pipeline.py
Browse files- pipeline.py +6 -0
pipeline.py
CHANGED
@@ -1186,6 +1186,9 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
|
1186 |
if do_classifier_free_guidance:
|
1187 |
# concatenate negative prompt embeddings with prompt embeddings on a new dimension after the first batch dimension
|
1188 |
prompt_embeds = torch.stack([negative_prompt_embeds, prompt_embeds], dim=1)
|
|
|
|
|
|
|
1189 |
|
1190 |
if ip_adapter_image is not None:
|
1191 |
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
|
@@ -1484,6 +1487,9 @@ class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdap
|
|
1484 |
|
1485 |
else:
|
1486 |
# predict the noise residual without contorlnet
|
|
|
|
|
|
|
1487 |
noise_pred = self.unet(
|
1488 |
latent_model_input,
|
1489 |
t,
|
|
|
1186 |
if do_classifier_free_guidance:
|
1187 |
# concatenate negative prompt embeddings with prompt embeddings on a new dimension after the first batch dimension
|
1188 |
prompt_embeds = torch.stack([negative_prompt_embeds, prompt_embeds], dim=1)
|
1189 |
+
|
1190 |
+
print("prompt_embeds shape after stacking")
|
1191 |
+
print(prompt_embeds.shape)
|
1192 |
|
1193 |
if ip_adapter_image is not None:
|
1194 |
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
|
|
|
1487 |
|
1488 |
else:
|
1489 |
# predict the noise residual without contorlnet
|
1490 |
+
# print current context embeding shape
|
1491 |
+
print("current context embeding shape")
|
1492 |
+
print(prompt_embeds[current_prompt_index].shape)
|
1493 |
noise_pred = self.unet(
|
1494 |
latent_model_input,
|
1495 |
t,
|