See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2.5-3B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 6f3ea3c9a448686a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/6f3ea3c9a448686a_train_data.json
type:
field_input: context_tweet
field_instruction: title
field_output: text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56a1/e0e7dcb0-1bcf-4185-9f32-7cd479bfc180
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 72GB
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/6f3ea3c9a448686a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: e0e7dcb0-1bcf-4185-9f32-7cd479bfc180
wandb_project: god
wandb_run: nzwu
wandb_runid: e0e7dcb0-1bcf-4185-9f32-7cd479bfc180
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
e0e7dcb0-1bcf-4185-9f32-7cd479bfc180
This model is a fine-tuned version of Qwen/Qwen2.5-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.1656
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0024 | 1 | 5.2213 |
5.1862 | 0.0119 | 5 | 4.3937 |
3.9152 | 0.0237 | 10 | 3.4172 |
3.3958 | 0.0356 | 15 | 3.2849 |
3.2952 | 0.0474 | 20 | 3.2343 |
3.2612 | 0.0593 | 25 | 3.2063 |
3.1759 | 0.0712 | 30 | 3.1856 |
3.2333 | 0.0830 | 35 | 3.1750 |
3.2645 | 0.0949 | 40 | 3.1689 |
3.1657 | 0.1068 | 45 | 3.1663 |
3.2162 | 0.1186 | 50 | 3.1656 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 40