See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Meta-Llama-3.1-8B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 362ace4cf701ccff_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/362ace4cf701ccff_train_data.json
type:
field_input: eval_solution
field_instruction: problem
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: sn56a2/057aae61-be8c-4694-8a9e-162b8e1ec16d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/362ace4cf701ccff_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 4
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2028
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: disabled
wandb_name: 057aae61-be8c-4694-8a9e-162b8e1ec16d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 057aae61-be8c-4694-8a9e-162b8e1ec16d
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
057aae61-be8c-4694-8a9e-162b8e1ec16d
This model is a fine-tuned version of unsloth/Meta-Llama-3.1-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: nan
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0 | 0.0071 | 1 | nan |
0.0 | 0.0285 | 4 | nan |
0.0 | 0.0569 | 8 | nan |
0.0 | 0.0854 | 12 | nan |
0.0 | 0.1139 | 16 | nan |
0.0 | 0.1423 | 20 | nan |
0.0 | 0.1708 | 24 | nan |
0.0 | 0.1993 | 28 | nan |
0.0 | 0.2278 | 32 | nan |
0.0 | 0.2562 | 36 | nan |
0.0 | 0.2847 | 40 | nan |
0.0 | 0.3132 | 44 | nan |
0.0 | 0.3416 | 48 | nan |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for sn56a2/057aae61-be8c-4694-8a9e-162b8e1ec16d
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct
Finetuned
unsloth/Meta-Llama-3.1-8B-Instruct