See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/llama-2-7b-chat
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 6988c1d6cb479e79_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/6988c1d6cb479e79_train_data.json
type:
field_instruction: rephrased_questions
field_output: email
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: sn56a4/fb7a8ba2-0856-444d-b8ee-43c3b2474869
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/6988c1d6cb479e79_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: sn56a4/fb7a8ba2
wandb_project: god
wandb_run: ginh
wandb_runid: sn56a4/fb7a8ba2
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
ba279694-1f74-4f18-852c-6193d6e455cf
This model is a fine-tuned version of unsloth/llama-2-7b-chat on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4648
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0030 | 1 | 2.0068 |
1.8441 | 0.0274 | 9 | 1.9291 |
1.7904 | 0.0547 | 18 | 1.7400 |
1.6283 | 0.0821 | 27 | 1.6186 |
1.53 | 0.1094 | 36 | 1.5603 |
1.5453 | 0.1368 | 45 | 1.5282 |
1.441 | 0.1641 | 54 | 1.5023 |
1.4485 | 0.1915 | 63 | 1.4847 |
1.4485 | 0.2188 | 72 | 1.4739 |
1.4554 | 0.2462 | 81 | 1.4679 |
1.4489 | 0.2736 | 90 | 1.4652 |
1.4364 | 0.3009 | 99 | 1.4648 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for sn56a4/fb7a8ba2-0856-444d-b8ee-43c3b2474869
Base model
unsloth/llama-2-7b-chat