See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Yarn-Llama-2-7b-128k
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 31a03c1b7e5bae2e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/31a03c1b7e5bae2e_train_data.json
type:
field_instruction: context
field_output: question
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56m4/5c8da15d-798d-4f69-9c22-954747f974d9
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 2
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/31a03c1b7e5bae2e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: sn56m4/5c8da15d
wandb_project: god
wandb_run: p29p
wandb_runid: sn56m4/5c8da15d
warmup_steps: 20
weight_decay: 0.02
xformers_attention: false
3d4b73bd-167a-4355-986b-798396b65e7b
This model is a fine-tuned version of NousResearch/Yarn-Llama-2-7b-128k on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6613
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0005 | 1 | 1.2207 |
31.7486 | 0.0043 | 9 | 0.8724 |
22.876 | 0.0085 | 18 | 0.7378 |
23.504 | 0.0128 | 27 | 0.7081 |
22.467 | 0.0171 | 36 | 0.6968 |
22.2379 | 0.0214 | 45 | 0.6866 |
22.4085 | 0.0256 | 54 | 0.6808 |
22.147 | 0.0299 | 63 | 0.6737 |
21.7931 | 0.0342 | 72 | 0.6666 |
20.9497 | 0.0384 | 81 | 0.6634 |
21.4128 | 0.0427 | 90 | 0.6617 |
21.495 | 0.0470 | 99 | 0.6613 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Model tree for sn56m4/5c8da15d-798d-4f69-9c22-954747f974d9
Base model
NousResearch/Yarn-Llama-2-7b-128k