testing_b
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("sneakykilli/testing_b")
topic_model.get_topic_info()
Topic overview
- Number of topics: 20
- Number of training documents: 5134
Click here for an overview of all topics.
Topic ID | Topic Keywords | Topic Frequency | Label |
---|---|---|---|
-1 | killiair - flight - service - customer - airport | 12 | -1_killiair_flight_service_customer |
0 | killiair - flight - airport - time - doha | 2257 | 0_killiair_flight_airport_time |
1 | bag - luggage - bags - cabin - pay | 847 | 1_bag_luggage_bags_cabin |
2 | jet - ryan - easy - air - flight | 499 | 2_jet_ryan_easy_air |
3 | refund - flight - cancelled - customer - service | 312 | 3_refund_flight_cancelled_customer |
4 | flight - delayed - delay - gatwick - hours | 229 | 4_flight_delayed_delay_gatwick |
5 | check - change - online - pay - fee | 173 | 5_check_change_online_pay |
6 | food - seat - meal - flight - plane | 151 | 6_food_seat_meal_flight |
7 | seats - seat - class - killiair - extra | 150 | 7_seats_seat_class_killiair |
8 | star - stressstress - stress - stars - zero | 149 | 8_star_stressstress_stress_stars |
9 | company - customer - worst - service - terrible | 74 | 9_company_customer_worst_service |
10 | thank - amazing - crew - flight - thanks | 73 | 10_thank_amazing_crew_flight |
11 | car - hire - rental - insurance - card | 62 | 11_car_hire_rental_insurance |
12 | stansted - flight - airport - parking - killiair | 39 | 12_stansted_flight_airport_parking |
13 | passport - date - son - gate - check | 33 | 13_passport_date_son_gate |
14 | chat - customer - service - reach - ai | 20 | 14_chat_customer_service_reach |
15 | voucher - rune - residual - booking - refund | 15 | 15_voucher_rune_residual_booking |
16 | band - word - easy - corporate - sue | 14 | 16_band_word_easy_corporate |
17 | malaga - page - alicante - taxi - killiair | 13 | 17_malaga_page_alicante_taxi |
18 | good - friendly - sh - service - late | 12 | 18_good_friendly_sh_service |
Training hyperparameters
- calculate_probabilities: False
- language: None
- low_memory: False
- min_topic_size: 10
- n_gram_range: (1, 1)
- nr_topics: 20
- seed_topic_list: None
- top_n_words: 10
- verbose: False
- zeroshot_min_similarity: 0.7
- zeroshot_topic_list: None
Framework versions
- Numpy: 1.24.3
- HDBSCAN: 0.8.33
- UMAP: 0.5.5
- Pandas: 2.0.3
- Scikit-Learn: 1.2.2
- Sentence-transformers: 2.3.1
- Transformers: 4.36.2
- Numba: 0.57.1
- Plotly: 5.16.1
- Python: 3.10.12
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.