metadata
tags:
- quantized
- 4-bit
- AWQ
- text-generation
- autotrain_compatible
- endpoints_compatible
- chatml
library_name: transformers
license: apache-2.0
datasets:
- Locutusque/hyperion-v2.0
language:
- en
model_creator: Locutusque
model_name: Darewin-7B
model_type: mistral
pipeline_tag: text-generation
inference: false
prompt_template: |
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
quantized_by: Suparious
Locutusque/Hyperion-2.1-Mistral-7B AWQ
- Model creator: Locutusque
- Original model: Hyperion-2.1-Mistral-7B
Model Summary
Further fine-tuned Locutusque/Hyperion-2.0-Mistral-7B at a higher learning rate. This was done to see if performance increased. Read Locutusque/Hyperion-2.0-Mistral-7B's model card for more information. Slight performance gain was observed. More checkpoints will be released in the future.
How to use
Install the necessary packages
pip install --upgrade autoawq autoawq-kernels
Example Python code
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer
model_path = "solidrust/Hyperion-2.1-Mistral-7B-AWQ"
system_message = "You are Hyperion, incarnated as a powerful AI."
# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
streamer = TextStreamer(tokenizer,
skip_prompt=True,
skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
prompt = "You're standing on the surface of the Earth. "\
"You walk one mile south, one mile west and one mile north. "\
"You end up exactly where you started. Where are you?"
tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
return_tensors='pt').input_ids.cuda()
# Generate output
generation_output = model.generate(tokens,
streamer=streamer,
max_new_tokens=512)
About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
It is supported by:
- Text Generation Webui - using Loader: AutoAWQ
- vLLM - version 0.2.2 or later for support for all model types.
- Hugging Face Text Generation Inference (TGI)
- Transformers version 4.35.0 and later, from any code or client that supports Transformers
- AutoAWQ - for use from Python code
Prompt template: ChatML
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant