Edit model card

timpal0l/Mistral-7B-v0.1-flashback-v2-instruct AWQ

Model SUmmary

Mistral-7B-v0.1-flashback-v2-instruct is an instruct based version of the base model timpal0l/Mistral-7B-v0.1-flashback-v2. It has been finetuned on a the machine translated instruct dataset OpenHermes2.5.

How to use

Install the necessary packages

pip install --upgrade autoawq autoawq-kernels

Example Python code

from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer

model_path = "solidrust/Mistral-7B-v0.1-flashback-v2-instruct-AWQ"
system_message = "You are Mistral-7B-v0.1-flashback-v2-instruct, incarnated as a powerful AI. You were created by timpal0l."

# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
                                          fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
                                          trust_remote_code=True)
streamer = TextStreamer(tokenizer,
                        skip_prompt=True,
                        skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""

prompt = "You're standing on the surface of the Earth. "\
        "You walk one mile south, one mile west and one mile north. "\
        "You end up exactly where you started. Where are you?"

tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
                  return_tensors='pt').input_ids.cuda()

# Generate output
generation_output = model.generate(tokens,
                                  streamer=streamer,
                                  max_new_tokens=512)

About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.

It is supported by:

Downloads last month
18
Safetensors
Model size
1.2B params
Tensor type
I32
·
FP16
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for solidrust/Mistral-7B-v0.1-flashback-v2-instruct-AWQ

Quantized
(3)
this model

Datasets used to train solidrust/Mistral-7B-v0.1-flashback-v2-instruct-AWQ

Collection including solidrust/Mistral-7B-v0.1-flashback-v2-instruct-AWQ