Suparious's picture
Update model Card
914bdd0 verified
|
raw
history blame
3.95 kB
metadata
tags:
  - finetuned
  - quantized
  - 4-bit
  - AWQ
  - transformers
  - pytorch
  - mistral
  - instruct
  - text-generation
  - conversational
  - license:apache-2.0
  - autotrain_compatible
  - endpoints_compatible
  - text-generation-inference
  - finetune
  - chatml
  - generated_from_trainer
model-index:
  - name: Senzu-7B-v0.1-DPO
    results: []
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
datasets:
  - practical-dreamer/RPGPT_PublicDomain-alpaca
  - shuyuej/metamath_gsm8k
  - NeuralNovel/Neural-DPO
language:
  - en
quantized_by: Suparious
pipeline_tag: text-generation
model_creator: NeuralNovel
model_name: Senzu 7B 0.1 DPO
inference: false
prompt_template: |
  <|im_start|>system
  {system_message}<|im_end|>
  <|im_start|>user
  {prompt}<|im_end|>
  <|im_start|>assistant

NeuralNovel/Senzu-7B-v0.1-DPO

image/jpeg

Model Details

This model is Senzu-7B-v0.1 a fine-tuned version of mistralai/Mistral-7B-v0.1

DPO Trained on the Neural-DPO dataset.

Trained on the Neural-DPO This model excels at character roleplay, also with the ability of responding accurately to a wide variety of complex questions.

How to use

Install the necessary packages

pip install --upgrade autoawq autoawq-kernels

Example Python code

from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer

model_path = "solidrust/Nous-Hermes-2-Mistral-7B-DPO-AWQ"
system_message = "You are Hermes, incarnated a powerful AI."

# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
                                          fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
                                          trust_remote_code=True)
streamer = TextStreamer(tokenizer,
                        skip_prompt=True,
                        skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""

prompt = "You're standing on the surface of the Earth. "\
        "You walk one mile south, one mile west and one mile north. "\
        "You end up exactly where you started. Where are you?"

tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
                  return_tensors='pt').input_ids.cuda()

# Generate output
generation_output = model.generate(tokens,
                                  streamer=streamer,
                                  max_new_tokens=512)

About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.

It is supported by:

Prompt template: ChatML

<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant