|
--- |
|
license: apache-2.0 |
|
base_model: HooshvareLab/bert-fa-base-uncased-clf-digimag |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
model-index: |
|
- name: uncased-clf-digimag_v2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# uncased-clf-digimag_v2 |
|
|
|
This model is a fine-tuned version of [HooshvareLab/bert-fa-base-uncased-clf-digimag](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-clf-digimag) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2940 |
|
- Accuracy: 0.6481 |
|
- F1: 0.6482 |
|
- Precision: 0.6531 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:| |
|
| No log | 1.0 | 221 | 1.1060 | 0.5199 | 0.4953 | 0.5440 | |
|
| No log | 2.0 | 442 | 0.9657 | 0.6220 | 0.6234 | 0.6304 | |
|
| 1.0805 | 3.0 | 663 | 0.9398 | 0.6583 | 0.6591 | 0.6626 | |
|
| 1.0805 | 4.0 | 884 | 0.9883 | 0.6504 | 0.6511 | 0.6710 | |
|
| 0.6186 | 5.0 | 1105 | 1.0283 | 0.6459 | 0.6456 | 0.6506 | |
|
| 0.6186 | 6.0 | 1326 | 1.1060 | 0.6527 | 0.6503 | 0.6602 | |
|
| 0.3377 | 7.0 | 1547 | 1.1505 | 0.6652 | 0.6642 | 0.6786 | |
|
| 0.3377 | 8.0 | 1768 | 1.2264 | 0.6583 | 0.6569 | 0.6614 | |
|
| 0.3377 | 9.0 | 1989 | 1.2719 | 0.6447 | 0.6448 | 0.6480 | |
|
| 0.1804 | 10.0 | 2210 | 1.2940 | 0.6481 | 0.6482 | 0.6531 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|