sonoisa's picture
Update README.md
72d9b3d
|
raw
history blame
2.49 kB
---
language: ja
license: cc-by-sa-4.0
tags:
- sentence-transformers
- sentence-t5
- feature-extraction
- sentence-similarity
---
This is a Japanese sentence-T5 model.
日本語用Sentence-T5モデルです。
事前学習済みモデルとして[sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese)を利用しました。
推論の実行にはsentencepieceが必要です(pip install sentencepiece)。
手元の非公開データセットでは、精度は[sonoisa/sentence-bert-base-ja-mean-tokens](https://huggingface.co/sonoisa/sentence-bert-base-ja-mean-tokens)と同程度です。
# 使い方
```python
from transformers import T5Tokenizer, T5Model
import torch
class SentenceT5:
def __init__(self, model_name_or_path, device=None):
self.tokenizer = T5Tokenizer.from_pretrained(model_name_or_path, is_fast=False)
self.model = T5Model.from_pretrained(model_name_or_path).encoder
self.model.eval()
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = torch.device(device)
self.model.to(device)
def _mean_pooling(self, model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
@torch.no_grad()
def encode(self, sentences, batch_size=8):
all_embeddings = []
iterator = range(0, len(sentences), batch_size)
for batch_idx in iterator:
batch = sentences[batch_idx:batch_idx + batch_size]
encoded_input = self.tokenizer.batch_encode_plus(batch, padding="longest",
truncation=True, return_tensors="pt").to(self.device)
model_output = self.model(**encoded_input)
sentence_embeddings = self._mean_pooling(model_output, encoded_input["attention_mask"]).to('cpu')
all_embeddings.extend(sentence_embeddings)
return torch.stack(all_embeddings)
MODEL_NAME = "sonoisa/sentence-t5-base-ja-mean-tokens"
model = SentenceT5(MODEL_NAME)
sentences = ["暴走したAI", "暴走した人工知能"]
sentence_embeddings = model.encode(sentences, batch_size=8)
print("Sentence embeddings:", sentence_embeddings)
```