MBERT_multilingual-outputs

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6542
  • Accuracy: 0.7265
  • F1: 0.7449
  • Precision: 0.7226
  • Recall: 0.7685

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6934 1.2225 1000 0.6863 0.5622 0.4867 0.6227 0.3995
0.6304 2.4450 2000 0.5690 0.6687 0.6699 0.6946 0.6468
0.5145 3.6675 3000 0.5066 0.6962 0.7009 0.7175 0.6852
0.451 4.8900 4000 0.4770 0.7107 0.7221 0.7207 0.7235
0.4102 6.1125 5000 0.4892 0.7182 0.7418 0.7079 0.7791
0.3832 7.3350 6000 0.4712 0.7223 0.7314 0.7353 0.7275
0.3597 8.5575 7000 0.4848 0.7368 0.7543 0.7323 0.7778
0.3427 9.7800 8000 0.4802 0.7409 0.7677 0.7186 0.8241
0.3242 11.0024 9000 0.5468 0.7278 0.7494 0.7184 0.7831
0.3075 12.2249 10000 0.5706 0.7244 0.7343 0.7357 0.7328
0.2897 13.4474 11000 0.5962 0.7182 0.7263 0.7332 0.7196
0.2883 14.6699 12000 0.5836 0.7230 0.7343 0.7319 0.7368
0.2702 15.8924 13000 0.6106 0.7354 0.7631 0.7135 0.8201
0.2651 17.1149 14000 0.6323 0.7278 0.7503 0.7169 0.7870
0.2605 18.3374 15000 0.6400 0.7292 0.7451 0.7291 0.7619
0.2473 19.5599 16000 0.6542 0.7265 0.7449 0.7226 0.7685

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
12
Safetensors
Model size
178M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sophiayk20/MBERT_multilingual-outputs

Finetuned
(642)
this model