Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
4050bb1
1
Parent(s):
b00b3bb
cleanup
Browse files
app.py
CHANGED
@@ -139,12 +139,10 @@ model = model.to(device)
|
|
139 |
|
140 |
print('Loading Finished!')
|
141 |
|
142 |
-
|
143 |
def check_input_image(input_image):
|
144 |
if input_image is None:
|
145 |
raise gr.Error("No image uploaded!")
|
146 |
|
147 |
-
|
148 |
def preprocess(input_image, do_remove_background):
|
149 |
|
150 |
rembg_session = rembg.new_session() if do_remove_background else None
|
@@ -221,53 +219,16 @@ def _make3d(output_queue: SimpleQueue, images: Image.Image):
|
|
221 |
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320)
|
222 |
|
223 |
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
|
224 |
-
render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)
|
225 |
|
226 |
images = images.unsqueeze(0).to(device)
|
227 |
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
|
228 |
|
229 |
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
|
230 |
-
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
|
231 |
-
mesh_dirname = os.path.dirname(mesh_fpath)
|
232 |
-
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
|
233 |
-
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
|
234 |
|
235 |
with torch.no_grad():
|
236 |
# get triplane
|
237 |
planes = model.forward_planes(images, input_cameras)
|
238 |
|
239 |
-
# get video
|
240 |
-
# chunk_size = 20 if IS_FLEXICUBES else 1
|
241 |
-
# render_size = 384
|
242 |
-
|
243 |
-
|
244 |
-
# frames = []
|
245 |
-
# for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
|
246 |
-
# if IS_FLEXICUBES:
|
247 |
-
# frame = model.forward_geometry(
|
248 |
-
# planes,
|
249 |
-
# render_cameras[:, i:i+chunk_size],
|
250 |
-
# render_size=render_size,
|
251 |
-
# )['img']
|
252 |
-
# else:
|
253 |
-
# frame = model.synthesizer(
|
254 |
-
# planes,
|
255 |
-
# cameras=render_cameras[:, i:i+chunk_size],
|
256 |
-
# render_size=render_size,
|
257 |
-
# )['images_rgb']
|
258 |
-
|
259 |
-
# frames.append(frame)
|
260 |
-
|
261 |
-
# frames = torch.cat(frames, dim=1)
|
262 |
-
|
263 |
-
# images_to_video(
|
264 |
-
# frames[0],
|
265 |
-
# video_fpath,
|
266 |
-
# fps=30,
|
267 |
-
# )
|
268 |
-
|
269 |
-
# print(f"Video saved to {video_fpath}")
|
270 |
-
|
271 |
# get mesh
|
272 |
mesh_out = model.extract_mesh(
|
273 |
planes,
|
@@ -288,14 +249,6 @@ def _make3d(output_queue: SimpleQueue, images: Image.Image):
|
|
288 |
),
|
289 |
)
|
290 |
)
|
291 |
-
|
292 |
-
vertices = vertices[:, [1, 2, 0]]
|
293 |
-
|
294 |
-
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
|
295 |
-
save_obj(vertices, faces, vertex_colors, mesh_fpath)
|
296 |
-
|
297 |
-
print(f"Mesh saved to {mesh_fpath}")
|
298 |
-
|
299 |
output_queue.put(("mesh", mesh_out))
|
300 |
|
301 |
def generate_blueprint() -> rrb.Blueprint:
|
@@ -306,7 +259,7 @@ def generate_blueprint() -> rrb.Blueprint:
|
|
306 |
rrb.Spatial2DView(origin="z123image"),
|
307 |
rrb.Spatial2DView(origin="preprocessed_image"),
|
308 |
rrb.Spatial2DView(origin="mvs/image"),
|
309 |
-
rrb.TensorView(origin="mvs/latents"),
|
310 |
),
|
311 |
column_shares=[1, 1],
|
312 |
),
|
@@ -351,15 +304,13 @@ def log_to_rr(input_image, do_remove_background, sample_steps, sample_seed):
|
|
351 |
# return mesh
|
352 |
|
353 |
_HEADER_ = '''
|
354 |
-
<h2><b>
|
|
|
355 |
|
356 |
**InstantMesh** is a feed-forward framework for efficient 3D mesh generation from a single image based on the LRM/Instant3D architecture.
|
357 |
|
358 |
-
|
359 |
|
360 |
-
❗️❗️❗️**Important Notes:**
|
361 |
-
- Our demo can export a .obj mesh with vertex colors or a .glb mesh now. If you prefer to export a .obj mesh with a **texture map**, please refer to our <a href='https://github.com/TencentARC/InstantMesh?tab=readme-ov-file#running-with-command-line' target='_blank'>Github Repo</a>.
|
362 |
-
- The 3D mesh generation results highly depend on the quality of generated multi-view images. Please try a different **seed value** if the result is unsatisfying (Default: 42).
|
363 |
'''
|
364 |
|
365 |
_CITE_ = r"""
|
@@ -434,30 +385,6 @@ with gr.Blocks() as demo:
|
|
434 |
|
435 |
viewer = Rerun(streaming=True, height=800)
|
436 |
|
437 |
-
# with gr.Row():
|
438 |
-
|
439 |
-
# with gr.Column():
|
440 |
-
# mv_show_images = gr.Image(
|
441 |
-
# label="Generated Multi-views",
|
442 |
-
# type="pil",
|
443 |
-
# width=379,
|
444 |
-
# interactive=False
|
445 |
-
# )
|
446 |
-
|
447 |
-
# with gr.Row():
|
448 |
-
# with gr.Tab("OBJ"):
|
449 |
-
# output_model_obj = gr.Model3D(
|
450 |
-
# label="Output Model (OBJ Format)",
|
451 |
-
# interactive=False,
|
452 |
-
# )
|
453 |
-
# gr.Markdown("Note: Downloaded .obj model will be flipped. Export .glb instead or manually flip it before usage.")
|
454 |
-
# with gr.Tab("GLB"):
|
455 |
-
# output_model_glb = gr.Model3D(
|
456 |
-
# label="Output Model (GLB Format)",
|
457 |
-
# interactive=False,
|
458 |
-
# )
|
459 |
-
# gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
|
460 |
-
|
461 |
with gr.Row():
|
462 |
gr.Markdown('''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''')
|
463 |
|
@@ -470,19 +397,5 @@ with gr.Blocks() as demo:
|
|
470 |
inputs=[input_image, do_remove_background, sample_steps, sample_seed],
|
471 |
outputs=[viewer]
|
472 |
)
|
473 |
-
# submit.click(fn=check_input_image, inputs=[input_image]).success(
|
474 |
-
# fn=preprocess,
|
475 |
-
# inputs=[input_image, do_remove_background],
|
476 |
-
# outputs=[processed_image],
|
477 |
-
# ).success(
|
478 |
-
# fn=generate_mvs,
|
479 |
-
# inputs=[processed_image, sample_steps, sample_seed],
|
480 |
-
# outputs=[mv_images, mv_show_images]
|
481 |
-
|
482 |
-
# ).success(
|
483 |
-
# fn=make3d,
|
484 |
-
# inputs=[mv_images],
|
485 |
-
# outputs=[output_model_obj, output_model_glb]
|
486 |
-
# )
|
487 |
|
488 |
demo.launch()
|
|
|
139 |
|
140 |
print('Loading Finished!')
|
141 |
|
|
|
142 |
def check_input_image(input_image):
|
143 |
if input_image is None:
|
144 |
raise gr.Error("No image uploaded!")
|
145 |
|
|
|
146 |
def preprocess(input_image, do_remove_background):
|
147 |
|
148 |
rembg_session = rembg.new_session() if do_remove_background else None
|
|
|
219 |
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320)
|
220 |
|
221 |
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
|
|
|
222 |
|
223 |
images = images.unsqueeze(0).to(device)
|
224 |
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
|
225 |
|
226 |
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
|
|
|
|
|
|
|
|
|
227 |
|
228 |
with torch.no_grad():
|
229 |
# get triplane
|
230 |
planes = model.forward_planes(images, input_cameras)
|
231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
# get mesh
|
233 |
mesh_out = model.extract_mesh(
|
234 |
planes,
|
|
|
249 |
),
|
250 |
)
|
251 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
output_queue.put(("mesh", mesh_out))
|
253 |
|
254 |
def generate_blueprint() -> rrb.Blueprint:
|
|
|
259 |
rrb.Spatial2DView(origin="z123image"),
|
260 |
rrb.Spatial2DView(origin="preprocessed_image"),
|
261 |
rrb.Spatial2DView(origin="mvs/image"),
|
262 |
+
rrb.TensorView(origin="mvs/latents", ),
|
263 |
),
|
264 |
column_shares=[1, 1],
|
265 |
),
|
|
|
304 |
# return mesh
|
305 |
|
306 |
_HEADER_ = '''
|
307 |
+
<h2><b>Duplicate of the <a href=https://huggingface.co/spaces/TencentARC/InstantMesh>InstantMesh space</a> that uses <a href=https://rerun.io/>Rerun</a> for visualization.</b></h2>
|
308 |
+
<h2><a href='https://github.com/TencentARC/InstantMesh' target='_blank'><b>InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models</b></a></h2>
|
309 |
|
310 |
**InstantMesh** is a feed-forward framework for efficient 3D mesh generation from a single image based on the LRM/Instant3D architecture.
|
311 |
|
312 |
+
Technical report: <a href='https://arxiv.org/abs/2404.07191' target='_blank'>ArXiv</a>.
|
313 |
|
|
|
|
|
|
|
314 |
'''
|
315 |
|
316 |
_CITE_ = r"""
|
|
|
385 |
|
386 |
viewer = Rerun(streaming=True, height=800)
|
387 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
388 |
with gr.Row():
|
389 |
gr.Markdown('''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''')
|
390 |
|
|
|
397 |
inputs=[input_image, do_remove_background, sample_steps, sample_seed],
|
398 |
outputs=[viewer]
|
399 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
|
401 |
demo.launch()
|