Spaces:
Sleeping
Sleeping
import os | |
import json | |
import streamlit as st | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_chroma import Chroma | |
from langchain_groq import ChatGroq | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from vectorize_documents import embeddings | |
working_dir = os.path.dirname(os.path.abspath(__file__)) | |
config_data = json.load(open(f"{working_dir}/config.json")) | |
GROQ_API_KEY = config_data["GROQ_API_KEY"] | |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY | |
def setup_vectorstore(): | |
persist_directory = f"{working_dir}/vector_db_dir" | |
embedddings = HuggingFaceEmbeddings() | |
vectorstore = Chroma(persist_directory=persist_directory, | |
embedding_function=embeddings) | |
return vectorstore | |
def chat_chain(vectorstore): | |
llm = ChatGroq(model="llama-3.1-70b-versatile", | |
temperature=0) | |
retriever = vectorstore.as_retriever() | |
memory = ConversationBufferMemory( | |
llm=llm, | |
output_key="answer", | |
memory_key="chat_history", | |
return_messages=True | |
) | |
chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=retriever, | |
chain_type="stuff", | |
memory=memory, | |
verbose=True, | |
return_source_documents=True | |
) | |
return chain | |
st.set_page_config( | |
page_title="Multi Doc Chat", | |
page_icon = "π", | |
layout="centered" | |
) | |
st.title("π Multi Documents Chatbot") | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [] | |
if "vectorstore" not in st.session_state: | |
st.session_state.vectorstore = setup_vectorstore() | |
if "conversationsal_chain" not in st.session_state: | |
st.session_state.conversationsal_chain = chat_chain(st.session_state.vectorstore) | |
for message in st.session_state.chat_history: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
user_input = st.chat_input("Ask AI...") | |
if user_input: | |
st.session_state.chat_history.append({"role": "user", "content": user_input}) | |
with st.chat_message("user"): | |
st.markdown(user_input) | |
with st.chat_message("assistant"): | |
response = st.session_state.conversationsal_chain({"question": user_input}) | |
assistant_response = response["answer"] | |
st.markdown(assistant_response) | |
st.session_state.chat_history.append({"role": "assistant", "content": assistant_response}) | |