File size: 6,784 Bytes
ce5090a
44ac8be
547b696
 
0a59c28
09990e0
547b696
 
cf67526
44ac8be
547b696
0a59c28
547b696
 
ce5090a
547b696
 
 
 
 
ce5090a
0a59c28
 
547b696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a59c28
cf67526
 
 
 
 
 
ce5090a
 
 
5f0394b
 
 
 
 
 
 
 
 
ce5090a
 
 
547b696
 
cf67526
547b696
 
 
0a59c28
547b696
cf67526
 
547b696
cf67526
 
 
 
547b696
cf67526
547b696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf67526
 
 
 
 
0a59c28
cf67526
0a59c28
cf67526
 
 
547b696
44ac8be
547b696
 
 
 
44ac8be
 
b881675
44ac8be
 
 
 
 
 
 
 
 
 
 
 
 
547b696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a59c28
 
 
b881675
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import json
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chat_models import ChatAnthropic
from langchain.vectorstores import Pinecone
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import JSONLoader
from langchain.chains import ConversationalRetrievalChain
from langchain.prompts import ChatPromptTemplate
from langchain.memory import ConversationBufferMemory
from pinecone import Pinecone as PC, ServerlessSpec
import time
import re
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Initialize Pinecone
pinecone_api_key = os.environ.get("PINECONE_API_KEY")
if not pinecone_api_key:
    raise HTTPException(status_code=500, detail="PINECONE_API_KEY environment variable is not set")

try:
    pc = PC(api_key=pinecone_api_key)
except Exception as e:
    raise HTTPException(status_code=500, detail=f"Failed to initialize Pinecone: {str(e)}")

index_name = "anthropic"  # Replace with your actual index name

# Initialize Anthropic
anthropic_api_key = os.environ.get("ANTHROPIC_API_KEY")
if not anthropic_api_key:
    raise HTTPException(status_code=500, detail="ANTHROPIC_API_KEY environment variable is not set")

try:
    embeddings = HuggingFaceEmbeddings()
    llm = ChatAnthropic(anthropic_api_key=anthropic_api_key)
except Exception as e:
    raise HTTPException(status_code=500, detail=f"Failed to initialize Anthropic: {str(e)}")

class Query(BaseModel):
    query_text: str
    session_id: str

def clean_response(response):
    cleaned = response.strip()
    cleaned = re.sub(r'^["\']+|["\']+$', '', cleaned)
    cleaned = re.sub(r'\n+', '\n', cleaned)
    cleaned = cleaned.replace('\\n', '')
    return cleaned

prompt = ChatPromptTemplate.from_template(
"""
You are a helpful assistant designed specifically for the Thapar Institute of Engineering and Technology (TIET), a renowned technical college. Your task is to answer all queries related to TIET. Every response you provide should be relevant to the context of TIET. If a question falls outside of this context, please decline by stating, 'Sorry, I cannot help with that.' If you do not know the answer to a question, do not attempt to fabricate a response; instead, politely decline.
You may elaborate on your answers slightly to provide more information, but avoid sounding boastful or exaggerating. Stay focused on the context provided.
If the query is not related to TIET or falls outside the context of education, respond with:
        "Sorry, I cannot help with that. I'm specifically designed to answer questions about the Thapar Institute of Engineering and Technology. 
        For more information, please contact at our toll-free number: 18002024100 or E-mail us at [email protected]
<context>
{context}
</context>
Question: {input}  
"""
)

# Store conversation histories
conversation_histories = {}

@app.get("/")
def read_root():
    return {"Hello": "World"}

@app.post("/query")
def read_item(query: Query):
    try:
        vectorstore = Pinecone.from_existing_index(index_name, embeddings)
    except Exception as e:
        print(f"Error loading vector store: {str(e)}")
        return {"response": "Vector Store Not Found or Error Loading. Please run /setup first."}
    
    if query.query_text:
        start = time.process_time()

        # Get or create a new conversation memory for this session
        if query.session_id not in conversation_histories:
            conversation_histories[query.session_id] = ConversationBufferMemory(
                memory_key="chat_history",
                return_messages=True
            )

        memory = conversation_histories[query.session_id]

        qa_chain = ConversationalRetrievalChain.from_llm(
            llm=llm,
            retriever=vectorstore.as_retriever(),
            memory=memory,
            combine_docs_chain_kwargs={"prompt": prompt}
        )

        response = qa_chain({"question": query.query_text})
        print("Response time:", time.process_time() - start)
        
        cleaned_response = clean_response(response['answer'])
        print("Cleaned response:", repr(cleaned_response))
        
        return {"response": cleaned_response}
    else:
        return {"response": "No Query Found"}

@app.get("/setup")
def setup():
    try:
        file_path = "./data/data.json"
        if not os.path.exists(file_path):
            print(f"The file {file_path} does not exist.")
            return {"response": "Error: Data file not found"}

        # Define a custom JSON loading function
        def json_loader(file_path):
            with open(file_path, 'r', encoding='utf-8-sig') as file:
                data = json.load(file)
                documents = []
                for item in data:
                    # Assuming each item in the JSON is a dictionary with relevant fields
                    # Adjust the keys based on your JSON structure
                    content = f"Title: {item.get('title', '')}\n"
                    content += f"Description: {item.get('description', '')}\n"
                    content += f"Additional Info: {item.get('additional_info', '')}"
                    documents.append({"content": content, "metadata": {"source": file_path}})
            return documents

        # Use the custom JSON loader
        documents = json_loader(file_path)

        print(f"Loaded document: {file_path}")

        text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
        chunks = text_splitter.split_documents(documents)
        
        print(f"Created {len(chunks)} chunks.")

        # Check if the index exists, if not, create it
        if index_name not in pc.list_indexes().names():
            pc.create_index(
                name=index_name,
                dimension=768,  # This should match the dimension of your HuggingFace embeddings
                metric='cosine',
                spec=ServerlessSpec(cloud='aws', region='us-west-2')  # Adjust as needed
            )

        vectorstore = Pinecone.from_documents(chunks, embeddings, index_name=index_name)
        
        print("Vector store created and saved successfully.")
        return {"response": "Vector Store in Pinecone Is Ready"}

    except Exception as e:
        print(f"An error occurred: {str(e)}")
        return {"response": f"Error: {str(e)}"}

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)