cutlass_v1 / app.py
ambrosfitz's picture
Update app.py
dabe6f0 verified
raw
history blame
2.2 kB
import gradio as gr
import os
from openai import OpenAI
# Initialize the OpenAI Client with your API key and endpoint
api_key = os.environ.get("RUNPOD_API_KEY") # Ensure your API key is correctly loaded from environment variables
client = OpenAI(
api_key=api_key,
base_url="https://api.runpod.ai/v2/vllm-k0g4c60zor9xuu/openai/v1",
)
def predict(message, history=None):
# Ensure history is initialized as an empty list if it's None
if history is None:
history = []
# Append the system role at the start if history is empty
if not history:
history.append(("system", "You are a history assistant, that provides the best possible answers to any historical questions asked about American History. Be helpful and specific, providing any detailed nuance needed to have a full understanding of the question."))
# Prepare messages in the format required by OpenAI
history_openai_format = []
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human})
history_openai_format.append({"role": "assistant", "content": assistant})
history_openai_format.append({"role": "user", "content": message})
# Make the API call
response_stream = client.chat.completions.create(
model="ambrosfitz/llama-3-history",
messages=history_openai_format,
temperature=0,
max_tokens=150,
stream=True,
)
# Accumulate response chunks to form the full message
full_message = ""
for chunk in response_stream:
if chunk.choices[0].delta.content is not None:
full_message += chunk.choices[0].delta.content
yield full_message
# Update history with the latest exchange
history.append((message, full_message))
# Set up the Gradio interface
iface = gr.Interface(
fn=predict,
inputs=[gr.Textbox(label="Type your question here..."), gr.State()],
outputs=[gr.Textbox(), gr.State()],
title="HistoryBot Chat",
description="Interact with HistoryBot, a specialized assistant for American History. Ask any historical questions to get detailed and nuanced answers.",
allow_flagging="never"
)
iface.launch()